Skip to main content
Log in

On the correlation between enstrophy and energy dissipation rate in a turbulent wake

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

All three components of the vorticity fluctuation have been measured simultaneously in a turbulent wake using a new eight-sensor vorticity probe. The vorticity fluctuation spectra agree reasonably well with those from a direct numerical simulation of a turbulent channel flow at high wavenumbers. The similarity between the instantaneous energy dissipation rate ε and the instantaneous enstrophy ω2 is examined using spectra and probability density functions. The correlation between ω2 and ε is evaluated in some detail. The homogeneous value of ε is strongly correlated with ω2. The full value of ε and, more especially its isotropic value, are less well correlated with the enstrophy. Conditional averaging indicates that high enstrophy regions are associated with high energy dissipation rate regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonia, R.A. and Kim, J., A numerical study of local isotropy of turbulence.Phys. Fluids A 6 (1994) 834–841.

    Article  ADS  Google Scholar 

  2. Antonia, R.A., Browne, L.W.B. and Shah, D.A., Characteristics of vorticity fluctuations in a turbulent wake.J. Fluid Mech. 189 (1988) 349–365.

    Article  ADS  Google Scholar 

  3. Antonia, R.A., Shah, D.A. and Browne, L.W.B., Dissipation and vorticity spectra in a turbulent wake.Phys. Fluids 31 (1988) 1805–1807.

    Article  ADS  Google Scholar 

  4. Antonia, R.A., Kim, J. and Browne, L.W.B., Some characteristics of small scale turbulence in a turbulent duct flow.J. Fluid Mech. 233 (1991) 369–388.

    Article  MATH  ADS  Google Scholar 

  5. Antonia, R.A., Zhu, Y. and Shafi, H.S., Lateral vorticity measurements in a turbulent wake.J. Fluid Mech. 323 (1996) 173–200.

    Article  ADS  Google Scholar 

  6. Ashurst, W.T., Kerstein, A.R., Kerr, R.M. and Gibson, C.H., Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence.Phys. Fluids 30 (1987) 2343–2353.

    Article  ADS  Google Scholar 

  7. Balint, J.-L., Wallace, J.M. and Vukoslavčević, P., The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties.J. Fluid Mech. 228 (1991) 53–86.

    ADS  Google Scholar 

  8. Bershadskii, A., Kit, E. and Tsinober, A., On universality of geometrical invariants in turbulence-experimental results.Phys. Fluids A 5 (1993) 1523–1525.

    Article  ADS  Google Scholar 

  9. Browne, L.W.B. and Antonia, R.A., Reynolds shear stress and heat flux measurements in a cylinder wake.Phys. Fluids 29 (1986) 709–713.

    Article  ADS  Google Scholar 

  10. Browne, L.W.B., Antonia, R.A. and Chua, L.P., Calibration of X-probes for turbulent flow measurements.Expts. in Fluids 7 (1989) 201–208.

    Article  ADS  Google Scholar 

  11. Browne, L.W.B., Antonia, R.A. and Shah, D.A., Turbulent energy dissipation in a wake,J. Fluid Mech. 179 (1987) 307–326.

    Article  ADS  Google Scholar 

  12. Corrsin, S. 1953. Remarks on turbulent heat transfer: An account of some features of the phenomenon in fully turbulent regions. In:Proc. The Iowa Thermodyn. Sym., University of Iowa (1953) pp. 5–30.

  13. Corrsin, S. and Kistler, A.L., Free-stream boundaries of turbulent flows, Technical Report 1244, NACA (1955).

  14. Freytag, C., Statistical properties of energy dissipation.Boundary-Layer Meteorol. 14 (1978) 183–198.

    Article  ADS  Google Scholar 

  15. Gibson, C.H. and Masiello, P.J., Observations of the variability of dissipation rates of turbulent velocity and temperature fields. In: Ehlers, J., Hepp, K. and Weidenmuller, H.A. (eds),Statistical Models and Turbulence, Lecture Notes in Physics, Vol. 12 (1972), pp. 427–453.

  16. Kerr, R.M., High-order derivative correlations and the alignments of small-scale structures in isotropic numerical turbulence.J. Fluid Mech. 153 (1985) 31–58.

    Article  MATH  ADS  Google Scholar 

  17. Kim, J., Moin, P. and Moser, R., Turbulent statistics in fully developed channel flow at low Reynolds number.J. Fluid Mech. 177 (1987) 133–166.

    Article  MATH  ADS  Google Scholar 

  18. Kit, E., Tsinober, A. and Dracos, T., Velocity gradients in a turbulent jet flow. In: Nieuwstadt, F.T.M. (ed.),Advances in Turbulence IV, Kluwer Academic Publishers, Dordrecht (1993) pp. 185–190.

    Google Scholar 

  19. Lemonis, G.C., An experimental study of the vector fields of velocity and vorticity in turbulent flows, Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich (1995).

    Google Scholar 

  20. Marasli, B., Nguyen, P. and Wallace, J.M., A calibration technique for multiple-sensor hot-wire probes and its application to vorticity measurements in the wake of a circular cylinder.Expts. in Fluids 15 (1993) 209–218.

    ADS  Google Scholar 

  21. Meneveau, C., Sreenivasan, K.R., Kailasnath, P. and Fan, M., Joint multifractal measures: Theory and applications to turbulence.Phys. Rev. A 41 (1990) 894–913.

    Article  MathSciNet  ADS  Google Scholar 

  22. Mi, J. and Antonia, R.A., Vorticity characteristics of the turbulent intermediate wake.Expts. in Fluids 20 (1996) 383–392.

    Google Scholar 

  23. Owen, R.G., An analytical turbulent transport model applied to nonisothermal fully-developed duct flows, Ph.D. Thesis, Pennsylvania State University (1973).

  24. Park, S.R. and Wallace, J.M., The influence of instantaneous velocity gradients on turbulence properties measured with multi-sensor hot-wire probes.Expts. in Fluids 16 (1993) 17–26.

    Google Scholar 

  25. Perry, A.E., Lim, K.L. and Henbest, S.M., An experimental study of the turbulence structure in smooth and rough-wall boundary layers.J. Fluid Mech. 177 (1987) 437–452.

    Article  ADS  Google Scholar 

  26. Rogers, M.M. and Moin, P., Helicity fluctuations in incompressible turbulent flows.Phys. Fluids 30 (1987) 2662–2671.

    Article  ADS  Google Scholar 

  27. Ruetsch, G.R. and Maxey, M.R., Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence.Phys. Fluids A 3 (1991) 1587–1597.

    Article  ADS  Google Scholar 

  28. Shafi, H.S., Zhu, Y. and Antonia, R.A., Intermittency of vorticity in a turbulent shear flow.Phys. Fluids 8 (1996) 2245–2247.

    Article  ADS  Google Scholar 

  29. She, Z.-S., Jackson, E. and Orszag, S.A., Intermittent vortex structures in homogeneous isotropic turbulence.Nature 344 (1990) 226–228.

    Article  ADS  Google Scholar 

  30. Spalart, P.R., Direct simulation of a turbulent boundary layer up to Rθ=1410.J. Fluid Mech. 187 (1988) 61–98.

    Article  MATH  ADS  Google Scholar 

  31. Tennekes, H. and Lumley, J.L.,A First Course in Turbulence. MIT Press, Cambridge, MA (1972).

    MATH  Google Scholar 

  32. Tsinober, A., On the property of Lamb vector in isotropic turbulent flow.Phys. Fluids A 2 (1990) 484–486.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Tsinober, A., How important are direct interactions between large and small scales in turbulent flows. In: Dracos, T. and Tsinober, A. (eds),New Approaches and Concepts in Turbulence. Basel, Birkhäuser Verlag (1993) pp. 141–150.

    Google Scholar 

  34. Tsinober, A., Geometrical statistics in turbulence. In: Gavrilakis, S., Machiels, L. and Monkewitz, P.A. (eds),Advances in Turbulence VI, Kluwer Academic Publishers, Dordrecht (1996) pp. 263–266.

    Google Scholar 

  35. Tsinober, A., Kit, E. and Dracos, T., Experimental investigation of the field of velocity gradients in turbulent flows.J. Fluid Mech. 242 (1992) 169–192.

    Article  ADS  Google Scholar 

  36. Vukoslavčević, P., Wallace, J.M. and Balint, J.-L., The velocity and vorticity vector fields of a turbulent boundary layer. Part 1: Simultaneous measurement by hot-wire anemometry.J. Fluid Mech. 228 (1991) 25–51.

    ADS  Google Scholar 

  37. Wallace, J.M. and Foss, J.F., The measurement of vorticity in turbulent flows.Ann. Rev. Fluid Mech. 27 (1995) 467–514.

    Article  ADS  Google Scholar 

  38. Wallace, J.M., Balint, J.-L. and Ong, L., An experimental study of helicity density in turbulent flows.Phys. Fluids A 4 (1992) 2013–2026.

    Article  ADS  Google Scholar 

  39. Zhu, Y. and Antonia, R.A., Effect of wire separation on X-probe measurements in a turbulent flow.J. Fluid Mech. 287 (1995) 199–233.

    Article  ADS  Google Scholar 

  40. Zhu, Y. and Antonia, R.A., Spatial resolution of a 4-X-wire vorticity probe.Meas. Sci. & Technol. 7 (1996) 1492–1497.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Antonia, R.A. On the correlation between enstrophy and energy dissipation rate in a turbulent wake. Appl. Sci. Res. 57, 337–347 (1996). https://doi.org/10.1007/BF02506068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506068

Key words

Navigation