Skip to main content
Log in

Investigations of reinforcement corrosion. 1. The pore electrolyte phase in chloride-contaminated concrete

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A sampling procedure, which avoids the need for wet cutting, has been developed for determination of compositional profiles of the pore liquid phase within concrete exposed to chloride ingress. The technique has been used to assess the effects on various concrete specimens of exposure to different regimes of chloride penetration and to compare them with those of salt, introduced as a constituent of the mix materials. The implications regarding corrosion risk to embedded steel are provisionally evaluated in terms of the ratio of chloride to hydroxyl ion concentrations in the pore solution. The significance of this parameter is to be considered in Part 2.

Resume

On exprime généralement en termes de contenu total de chlorure et de profondeur de carbonatation les critères qui déterminent le risque de corrosion dans le béton armé. On détermine par les procédures analytiques classiques la teneur totale en chlorure, et par les indications de pH telles que la phénolphtaléine, la profondeur de carbonatation. Ces méthodes sont imprécises du fait qu’une proportion variable de la teneur totale en chlorure peut exister sous forme insoluble comme celle de l’hydrate de chloroaluminate de calcium et que, d’autre part, le pH de l’électrolyte présent dans le béton que la phénolphtaléine indique comme étant alcalin, peut varier d’environ 10–14.

Afin d’obtenir une plus sûre indication du risque de corrosion à différentes profondeurs dans le béton exposé à des milieux riches en chlorures, on doit analyser la composition de l’électrolyte interstitielle en fonction de la distance de la surface exposée. Cet article, qui est le premier d’une étude en deux parties, décrit une approche expérimentale par laquelle on dispose d’échantillons de matériau avec solution interstitielle à différentes profondeurs dans des spécimens de béton exposés sans qu’on ait recours à un outil de coupe lubrifié. Cette technique appelée ‘crush-section’ élude par conséquent les risques potentiels de contamination de l’échantillon et de lessivage. On a procédé à une estimation des effets de l’exposition sur plusieurs types de béton à différents régimes de progression de sels. Les risques de corrosion en tant que fonction de la profondeur de pénétration et de la durée d’exposition sont provisoirement évalués en termes de variation des concentrations relatives de chlorure libre et d’ions hydroxyles dans la solution interstitielle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Page, C. L. and Treadaway, K. W. J., ‘Aspects of the electrochemistry of steel in concrete’,Nature 297 (5862) (1982) 109–115.

    Article  Google Scholar 

  2. Hausmann, D. A., ‘Steel corrosion in concrete’,Mater. Protection 6 (November 1967) 19–23.

    Google Scholar 

  3. Gouda, V. K., ‘Corrosion and corrosion inhibition of reinforcing steel: 1. Immersed in alkaline solution’,Br. Corrosion J. 5 (1970) 198–203.

    Google Scholar 

  4. Page, C. L. and Lambert, P., ‘Analytical and electrochemical investigations of reinforcement corrosion’, TRRL Contractor Report CR 30 (Transport and Road Research Laboratory, 1986).

  5. British Standards Institution, ‘The testing of hardened concrete’, BS 1881 (1983).

  6. Longuet, P., Burglen, L. and Zelwer, A., ‘La phase liquide du ciment hydraté’,Rev. Matér. Constr. Trav. Publics 676 (1973) 35–41.

    Google Scholar 

  7. Tuutti, K., ‘Corrosion of steel in concrete’, Research Report FO 4 (Swedish Cement and Concrete Institute, Stockholm, 1982).

    Google Scholar 

  8. Sorensen, B. and Maahn, E., ‘Penetration rate of chloride in marine concrete structures’,Nordic Concr. Res. 1 (1982) 24.1–24.18.

    Google Scholar 

  9. Page, C. L. and Vennesland, O., ‘Pore solution composition and chloride binding capacity of silica-fume cement pastes’,Mater. Struct. 16 (1983) 19–25.

    Google Scholar 

  10. Holden, W. R., Page, C. L. and Short, N. R., ‘The influence of chlorides and sulphates on durability’, in ‘Corrosion of Reinforcement in Concrete Construction’, edited by A. P. Crane (Ellis Horwood, Chichester, 1983) pp. 143–150.

    Google Scholar 

  11. Andrade, C. and Page, C. L., ‘Pore solution chemistry and corrosion in hydrated cement systems containing chloride salts: a study of cation specific effects’,Br. Corrosion J. 21 (1) (1986) 49–53.

    Google Scholar 

  12. Page, C. L., Short, N. R. and Holden, W. R., ‘The influence of different cements on chloride-induced corrosion of steel in concrete’,Cement Concr. Res. 16 (1) (1986) 79–86.

    Article  Google Scholar 

  13. Byfors, K., Hansson, C. M. and Tritthart, J., ‘Pore solution expression as a method to determine the influence of mineral additives on chloride binding’.ibid. 16 (5) (1986) 760–770.

    Article  Google Scholar 

  14. Diamond, S., ‘Chloride concentrations in concrete pore solutions resulting from calcium and sodium chloride admixtures’.Cement Concr. Aggreg. 8 (2) (1986) 97–102.

    Article  MathSciNet  Google Scholar 

  15. Mangat, P. and Gurusamy, K., ‘Pore fluid composition under marine exposure of steel fibre reinforced concrete’,Cement Concr. Res. 17 (5) (1987) 734–742.

    Article  Google Scholar 

  16. Kayyali, O. A. and Haque, M. N., ‘Chloride penetration and the ratio of Cl/OH in the pores of cement paste’.ibid. 18 (6) (1988) 895–901.

    Article  Google Scholar 

  17. Vogel, A. I., ‘A Text-book of Quantitative Inorganic Analysis’, 4th Edn (Longman, Harlow, 1978) pp. 753–755.

    Google Scholar 

  18. Berman, H. A., ‘Determination of chloride in hardened portland cement paste, mortar and concrete’,J. Mater. 7 (1972) 330–335.

    Google Scholar 

  19. Wallbank, E. J., ‘The performance of concrete in bridges: a survey of 200 highway bridges’ (Department of Transport, HMSO, London, 1989).

    Google Scholar 

  20. Neville, A. M. and Brooks, J. J., ‘Concrete Technology’ (Longman, Harlow, 1987) pp. 101–108.

    Google Scholar 

  21. Crank, J., ‘The Mathematics of Diffusion’ (Oxford University Press, 1975).

  22. Collepardi, M., Marcialis, A. and Turriziani, R., ‘Penetration of chloride ions into cement pastes and concretes’,J. Amer. Ceram. Soc. 55 (1972) 534–535.

    Article  Google Scholar 

  23. Page, C. L., Short, N. R. and El Tarras, A., ‘Diffusion of chloride ions in hardened cement pastes’,Cement Concr. Res. 11 (1981) 395–406.

    Article  Google Scholar 

  24. Roberts, M. H., ‘Effects of calcium chloride on the durability of pre-tensioned wire in prestressed concrete’,Mag. Concr. Res. 14 (42) (1962) 143–154.

    Google Scholar 

  25. Nixon, P. J., Page, C. L., Canham, I. and Bollinghaus, R., ‘Influence of sodium chloride on alkali-silica reaction’,Adv. Cement Res. 1 (2) (1988) 99–106.

    Google Scholar 

  26. Lambert, P., Page, C. L. and Vassie, P. R. W., ‘Investigations of reinforcement corrosion. 2. Electrochemical monitoring of steel in chloride-contaminated concrete’,Mater. Struct. in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Crown Copyright. The views expressed in this paper are not necessarily those of the Department of Transport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, C.L., Lambert, P. & Vassie, P.R.W. Investigations of reinforcement corrosion. 1. The pore electrolyte phase in chloride-contaminated concrete. Materials and Structures 24, 243–252 (1991). https://doi.org/10.1007/BF02472078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472078

Keywords

Navigation