Skip to main content
Log in

Immune network behavior—II. From oscillations to chaos and stationary states

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Two types of behavior have been previously reported in models of immune networks. The typical behavior of simple models, which involve B cells only, is stationary behavior involving several steady states. Finite amplitude perturbations may cause the model to switch between different equilibria. The typical behavior of more realistic models, which involve both B cells and antibody, consists of autonomous oscillations and/or chaos. While stationary behavior leads to easy interpretations in terms of idiotypic memory, oscillatory behavior seems to be in better agreement with experimental data obtained in unimmunized animals. Here we study a series of models of the idiotypic interaction between two B cell clones. The models differ with respect to the incorporation of antibodies, B cell maturation and compartmentalization. The most complicated model in the series has two realistic parameter regimes in which the behavior is respectively stationary and chaotic. The stability of the equilibrium states and the structure and interactions of the stable and unstable manifolds of the saddle-type equilibria turn out to be factors influencing the model's behavior. Whether or not the model is able to attain any form of sustained oscillatory behavior, i.e. limit cycles or chaos, seems to be determined by (global) bifurcations involving the stable and unstable manifolds of the equilibrium states. We attempt to determine whether such behavior should be expected to be attained from reasonable initial conditions by incorporating an immune response to an antigen in the model. A comparison of the behavior of the model with experimental data from the literature provides suggestions for the parameter regime in which the immune system is operating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andersson, J., A. Coutinho, W. Lernhardt and F. Melchers. 1977. Clonal growth and maturation to immunoglobulin secretionin vitro of every growth inducible B lymphocyte.Cell 10, 27–34.

    Article  Google Scholar 

  • Aronson, D. G., M. Golubitsky and J. Mallet-Paret. 1991. Ponies on a merry-go-round in large arrays of Josephson junctions.Nonlinearity 4, 903–910.

    Article  MATH  MathSciNet  Google Scholar 

  • Berek, C. and C. Milstein. 1988. The dynamic nature of the antibody repertoire.Immunol. Rev. 105, 5–26.

    Article  Google Scholar 

  • Coutinho, A., A. Bandeira, P. Pereira, D. Portnoï, D. Holmberg, C. Martinez-A and A. Freitas. 1990. Selection of lymphocyte repertoires: The limits of clonal versus network organization.Symp. Quant. Biol., Cold Spring Harbor Lab. NY 54, 159–170.

    Google Scholar 

  • Darnell, J. E., H. Lodish and D. Baltimore. 1986.Molecular Cell Biology, pp. 1108–1109. New York: Scientific American Books.

    Google Scholar 

  • De Boer, R. J. 1983.GRIND: Great Integrator Differential Equations, University of Utrecht, The Netherlands: Bioinformatics Group.

    Google Scholar 

  • De Boer, R. J. 1988. Symmetric idiotypic networks: connectance and switching, stability, and suppression. InTheoretical Immunology—Part Two. A. S. Perelson (Ed.), pp. 265–289;SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989a. Stability of symmetric idiotypic networks—a critique of Hoffman's analysis.Bull. math. Biol. 51, 217–222.

    Article  Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989b. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. math. Biol. 51, 223–246.

    Article  MATH  Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1989c. Unreasonable implications of reasonable idiotypic network assumptions.Bull. math. Biol. 51, 381–408.

    Article  MATH  Google Scholar 

  • De Boer, R. J. and A. S. Perelson. (1991). Size and connectivity as emergent properties of a developing immune network.J. theor. biol. 149, 381–424.

    Google Scholar 

  • De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1990. A simple idiotypic network model with complex dynamics.Chem. Engng Sci. 45, 2375–2382.

    Article  Google Scholar 

  • De Boer, R. J., A. S. Perelson and I. G. Kevrekidis. 1993. Immune network behavior—I. From stationary states to limit cycle oscillations.Bull. math. Biol. 55, 745–780.

    Article  MATH  Google Scholar 

  • Doedel, E. J. 1981. AUTO: a program for the bifurcation analysis of autonomous systems.Cong. Num. 30, 265–285.

    MATH  MathSciNet  Google Scholar 

  • Eisen, 1980.Immunology, 2nd edn. Hagerstown, MA: Harper and Row.

    Google Scholar 

  • Gardner, M. R. and W. R. Ashby. 1970. Connectance of large dynamic (cybernetic) systems: critical values for stability.Nature 228, 784.

    Article  Google Scholar 

  • Jerne, N. K. 1974. Towards a network theory of the immune system.Ann. Immunol. (Inst. Pasteur) 125 C, 373–389.

    Google Scholar 

  • Kang, C.-Y. and H. Köhler. 1986. Immunoglobulin with complementary paratope and idiotope.J. exp. Med. 163, 787–796.

    Article  Google Scholar 

  • Leis, J. R. and M. A. Kramer. 1988. ODESSA, an ordinary differential equation solver with explicit simultaneous sensitivity analysis.ACM Trans. Math. Software 14, 61–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Lorenz, E. N. 1963. Deterministic nonperiodic flow.J. atmos. Sci. 20, 130–141.

    Article  Google Scholar 

  • Lundkvist, I., A. Coutinho, F. Varela and D. Holmberg. 1989. Evidence for a functional idiotypic network amongst natural antibodies in normal mice.Proc. natn. Acad. Sci. USA 86, 5074–5078.

    Article  Google Scholar 

  • May, R. M. 1972. Will a large complex system be stable?Nature 238, 413–414.

    Article  Google Scholar 

  • Neumann, A. U. and G. Weisbuch. 1991. Window automata analysis of population dynamics in the immune system.Bull. math. Biol. 54, 21–44.

    Google Scholar 

  • Perelson, A. S. 1981. Receptor clustering on a cell surface. III. Theory of receptor crosslinking by multivalent ligands: Description by ligand states.Math. Biosci. 53, 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Perelson, A. S. and C. De Lisi. 1980. Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups.Math. Biosci. 48, 71–110.

    Article  MATH  MathSciNet  Google Scholar 

  • Perelson, A. S. and G. Weisbuch. 1992. Modeling immune reactivity in secondary lymphoid organs.Bull. math. Biol. 54, 649–672.

    Article  MATH  Google Scholar 

  • Pomeau, Y. and P. Manneville. 1980. Intermittent transition to turbulence in dissipative dynamical systems.Comm. math. Phys. 74, 189–197.

    Article  MathSciNet  Google Scholar 

  • Segel, L. A. and A. S. Perelson. 1989. Shape space analysis of immune networks. InCell to Cell Signalling: From Experiments to Theoretical Models. A. Goldbeter (Ed.), pp. 273–282. New York: Academic Press.

    Google Scholar 

  • Sparrow, C. 1982. The Lorenz equations: bifurcations chaos and strange attractors.Applied Mathematical Sciences, Vol. 41. New York: Springer Verlag.

    Google Scholar 

  • Sprent, J. 1989. T lymphocytes and the thymus. InFundamental Immunology. W. E. Paul (Ed.), pp. 69–93. New York: Raven Press.

    Google Scholar 

  • Stewart, J. and F. J. Varela. 1989. Exploring the meaning of connectivity in the immune network.Immunol. Rev. 110, 37–61.

    Article  Google Scholar 

  • Stewart, J. and F. J. Varela. 1990. Dynamics of a class of immune networks. II. Oscillatory activity of cellular and humoral components.J. theor. Biol. 144, 103–115.

    MathSciNet  Google Scholar 

  • Swift, J. W. and K. Wiesenfeld. 1984. Suppression of period doubling in symmetric systems.Phys. Rev. Lett. 52, 705–708.

    Article  MathSciNet  Google Scholar 

  • Taylor, M. A., M. S. Jolly and I. G. Kevrekidis. 1990.SCIGMA Technical Report. Department of Chemical Engineering, Princeton University.

  • Varela, F. J., A. Anderson, G. Dietrich, A. Sundblad, D. Holmberg, M. Kazatchkine and A. Coutinho. 1991. The population dynamics of natural antibodies in normal and autoimmune individuals.Proc. natn. Acad. Sci. USA 88, 5917–5921.

    Article  Google Scholar 

  • Weisbuch, G., R. J. De Boer and A. S. Perelson. 1990. Localized memories in idiotypic networks.J. theor. Biol. 146, 483–499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Boer, R.J., Perelson, A.S. & Kevrekidis, I.G. Immune network behavior—II. From oscillations to chaos and stationary states. Bltn Mathcal Biology 55, 781–816 (1993). https://doi.org/10.1007/BF02460673

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460673

Keywords

Navigation