Skip to main content
Log in

“Neutral theory” and the dynamics of the evolution of “Modern” human morphology

  • Published:
Human Evolution

Abstract

There is a widespread assumption, even among those who reject the Synthetic Theory of Evolution, that the form of “modern”Homo sapiens is somehow superior to that of archaicHomo sapiens (Tattersall 2000). Those who accept the general outlook of evolutionary biology also tend to assume that “modern” form emerged because it was selected for, which also implies that it was better than that which preceded it. However, after years of using craniofacial measurements to compare human populations, I finally came to realize that, with only a few exceptions, the dimensions measured have no relation to differences in adaptation (Brace 1989, 1996, 2000; Brace et al., 1993). Elsewhere the conclusion has been supported that what is shown by craniometrics is selectively neutral on the average (Relethford 2002). With the documentation that approximately 95% of the genome is not functional, molecular genetics has proved to be useful in documenting the length of time of separation of related human populations by investigating the differences that have accumulated in the neutral parts of the genome. Not surprisingly, the picture revealed by the study of genetic differences is very similar to the one revealed by the study of craniometric differences (Brace et al., 2001).

For this reason, the logic behind the “neutral theory” in molecular genetics is very similar to that applied to what happens to morphological characteristics when selection ceases (Brace 1963; Kimura 1968). The difference is that random changes in the neutral part of the genome have no other consequences. However, random changes in the genes that produce specific aspects of morphology will be visible even when selection is no longer controlling the particular trait in question. From an assessment of what random changes in genes controlling morphological traits are likely to do, it follows that the most likely change will probably be a reduction in the trait in question, i.e. the Probable Mutation Effect will produce structural reduction. When survival in the temperate zone during the last glaciation dependend on “obligatory cooking”, one of the unintended consequences was a reduction in the selective pressures maintaining a Middle Pleistocene-sized dentition. The result was a gradual reduction in tooth size and a conversion, of a Neanderthal-sized face into one of “modern” dimensions. The manufacture and use of string for snares and nets similarly reduced the selective pressures maintaining post-cranial levels of robustness and muscularity. The reduction in the latter resulted in the emergence of moderm post-cranial robustness out of what had been a Neanderthal level,in situ wherever the technology can be documented and without any need for invasions and replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anfinsen, Christian B., 1959.The Molecular Basis of Evolution. John Wiley & Sons, N.Y. 228 pp.

    Google Scholar 

  • Boule, Marcellin. 1913. L'homme fossile de La Chapelle-Aux-Saints. Extract fromAnnales de Paleontologie. 3 vols., 278 pp.

  • —. 1921.Les homesfossiis: Éléments de paleontology numaine. Masson et c. Paris. 491 pp,

    Google Scholar 

  • Bowdler, Sandra. 1976. Hook, line and dillybag: An interpretation ofan Australian coastal shell midden.Mankind 10(4):248–258.

    Google Scholar 

  • Brabant, Hyacinthe, and F. Twiesselmann. 1964. Observations sur V evolution de la denture permanente humaine en Europe occidentale. Bulletin duGroupement International pour la Recherche scientifique en Stomatologie 7(1):11–84.

    Google Scholar 

  • Brabant, Hyacinthe, and R. Ketelbant. 1975. Observation sur la frequence de certains caracteres Mongoloides dans la denture permanente de la population Belge.Bulletin du Groupement européenpour la Recherche scientifique en Stomatologie & Odontologie 18(3–4): 121–134.

    Google Scholar 

  • Brace, C. Loring. 1963. Structural reduction in evolution.The American Naturalist 97:39–49.

    Article  Google Scholar 

  • —. 1964. The probable mutation effect.The American Naturalist 56:32–33.

    Google Scholar 

  • —. 1979. Krapina, “classic” Neanderthais, and the evolution of the European face.Journal of Human Evolution 8(5):527–550.

    Article  Google Scholar 

  • —. 1980. Australian tooth size clines and the death of a stereotype. Current Anthropology 21 (2): 141–164.

    Article  Google Scholar 

  • —. 1995a. Bio-cultural interaction and the mechanism of mosaic evolution, in the emergence of “modern” morphology.American Anthropologist 97(4):711–721.

    Article  Google Scholar 

  • —. 1995b.The Stages of Human Evolution, 5th ed. Prentice-Hall, Englewood Cliffs, New Jersey. 371 pp.

    Google Scholar 

  • —. 1995c.Trends in the evolution of human tooth size. In Jacopo Moggi-Cecchi (ed.)Aspects of Dental Biology: Palaeontology, Anthropology and Evolution. International Institute for the Study of Man, Istituto de Antropologia, Università di Firenze, Florence, Italy. pp. 437–446.

    Google Scholar 

  • Brace, C. Loring, Shao Xiang-qing, and Zhang Zhen-biao. 1984. Prehistoric and modern tooth size in China. In Frank Spencer and Fred Smith (eds.)The Origin of Modern Humans: A World Survey of the Fossil Evidence. Alan Liss. N.Y. pp. 485–516.

    Google Scholar 

  • Brace, C. Loring, Karen Rosenberg, and Kevin D. Hunt. 1987. Gradual change in human tooth size in the late Pleistocene and post-Pleistocene.Evolution 41(4):705–720.

    Article  Google Scholar 

  • Brace, C. Loring, Mary L. Brace and William H. Leonard. 1989. Reflections on the face of Japan: A multivariate craniofacial and odontometric perspective.American Journal of Physical Anthropology 78(1):93–113.

    Article  Google Scholar 

  • Brace, C. Loring, A. Russell Nelson, Noriko Seguchi, Hiroaki Oe, Leslie Sering, Li Yongyi and Dashtseveg Tumen, 2001. Old World sources of the first New World inhabitants.Proceedings of the National Academy of Sciences U.S.A. 98(17): 10017–10022.

    Article  Google Scholar 

  • Brooks, Alison S. 1996. Behavioural perspectives on the origin of modern humans: Another look at the African evidence. In Marcel lo Piperno, Ofer Bar-Yosef and Luigi L. Cavalli-Sforza (eds.)The Origin of Modern Man. The Colloquia of the XIII International Congress of Prehistoric and Protohistoric Sciences. Forli (Italy). The Lower and Middle Palaeolithic Vol. 5, Colloquium X. A.B.A.C.O. Edizioni, Forli, Pp. 157–166.

    Google Scholar 

  • Calcagno James M., and Kathleen R. Gibson. 1991. Selective compromise: Evolutionary trends and mechanisms in hominid tooth size. In Mare A. Kelley and Clark S. Larsen (eds.)Advances in Dental Anthropology. Wiley-Liss, N.Y. pp. 59–76.

    Google Scholar 

  • Caramelli. David, Carles Lalueze-Fox, Cristiano Vernesi, Martina Lari. Antonella Casoli, Francesco Mallegni, Brunetto Chiarelli, Isabelle Dupanloup, Jaume Bertranpetit, Guido Barbujani, and Giorgio Bertorelle. 2003. Evidence for a Genetic discontinuity between Neandertals and 24,000-year-old anatomically Modern Europeans.Proceedings of the National Academy of Sciences U.S.A. 100(11):6593–6597.

    Article  Google Scholar 

  • Carson, Hampton L., Linda S. Chang and Terrence W. Lyttle. 1982. Decay of female sexual behaviour under parthenogenesis. Science 218:68–70.

    Google Scholar 

  • Coss, Richard G., and Donald H. Owings. 1989. Rattler battlers.Natural History 5:30–35.

    Google Scholar 

  • Darwin, Charles R., 1859.On the Origin of Species by Means of Natural Selection, Or the Preservation of the Favoured Races in the Struggle For Life. John Murray, London. 502 pp.

    Google Scholar 

  • Duarte, Cidàlia, Joào Mauricio, Paul B. Pettitt, Pedro Souto, Erik Trinkaus. Hans van der Plicht, and Joào Ziihào 1999. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Veiho (Portugal) and modern human emergence in Iberia.Proceedings of the National Academy of Sciences U.S.A. 96(13):7604–7609

    Article  Google Scholar 

  • Frayer, David Wayne. 1976.Evolutionary Dental changes in Upper Palaeolithic and Mesolithic Human Populations. Doctoral Dissertation (Anthropology), University of Michigan, Ann Arbor. 529 pp.

    Google Scholar 

  • Gagneaux. Pascal, Christopher Wilis, Ulrike Gerloff, Diethard Tautz, Philip A. Morin, Christophe Boesch, Barbara Fruth, Gottrfied Hohmann, Oliver A. Ryder. and David S. Woodrutf. 1999. Mitochondrial sequences show diverse evolutionary Histories of African hominoids.Proceedings of the National Academy of Sciences U.S.A. 96(9):5077–5082.

    Article  Google Scholar 

  • Goldschmidt, Richard B. 1940.The Material Basis of Evolution. Yale University Press. New Haven, Connecticut. 436 pp. Gould, Stephen Jay. 1977. The return of hopeful monsters. Naturai History 86(6):22–30.

    Google Scholar 

  • Hublin Jean-Jacques. 1978. Quelques caractères apomorphes du cràne néandertalien et leur interprétation phylogénique.Comptes Rendus Hebdomedaires des Séances de I 'Académìe des Sciences, Paris, Sèrie D, 287(10):923–926.

    Google Scholar 

  • Kimura, Motoo. 1968. Evolutionary rate at the molecular level. Nature 217:624–626.

    Article  Google Scholar 

  • —. 1979. Model of effectively neutral mutations in which selective constraint is incorporated.Proceedings of the National Academy of Sciences U.S.A. 76(7):3440–3444.

    Article  Google Scholar 

  • —. 1983.The neutral theory of molecular evolution. In Masatoshi New and Richard K. Koehn (eds.) Evolution of Genes and Proteins., Sinauer Associates, Publishers, Sunderland. Mass. pp. 208–233.

    Google Scholar 

  • King, Jack Lester. and Thomas H. Jukes. 1969. Non-Darwinian evolution.Science 164:788–798.

    Google Scholar 

  • Kuhn, Steven L., and Mary C. Stiner. 1998.Middle Palaeolithic ‘creativity’: Reflections on an oxymoron? In Steven J. Mithen (ed.) Creativity in Human Evolution. Routledge, London. Pp. 143–164.

    Google Scholar 

  • Kuhn, Steven L., Mary L. Stiner, David S. Reese and Erksin Gulec. 2001. Ornaments of the earliest Upper Paleolithic: New insights from the Levant.Proceedings of the National Academy of Sciences U.S.A. 98 (13):7641–7646.

    Article  Google Scholar 

  • McBrearty, Sally. and Alison S. Brooks, 2000. The revolution that wasn't: A new interpretation of the origin of modern human behavior.Journal of Human Evolution 39(5):453–463.

    Article  Google Scholar 

  • Macchiarelli, Roberto, and L. Bondioli. 1986. Post-Pleistocene reductions in human dental structure: A reappraisal in terms of increasing population density.Human Evolution 1(5):4005–418.

    Google Scholar 

  • Matiegka, Jindrich. 1934.Homo Predmostensis Fosilni Clovèk z Predmosti na Morave. Publications of the Czech Academy of Science and Art, Prague. 145 pp.

    Google Scholar 

  • Movius, Hallam L., Jr. 1969. The Chàtelperronian in French archaeology: The evidence of Arcy-sur-Cure.Antiquity 43:111–123.

    Google Scholar 

  • Muller, Hermann J. 1935.Out of the Night: A Biologist's View of the Future. The Vanguard Press, N.Y. 127 pp.

    Google Scholar 

  • — 1949. The Darwinian and modem conceptions of natural selection.Proceedings of the American Philosophical Society 93(6):459–470.

    Google Scholar 

  • Ohta, Tomoko. 1974. Mutational pressure as the main cause of molecular evolution and polymorphism.Nature 252:351–354.

    Article  Google Scholar 

  • Owings, Donald H., and Richard G. Coss. 1977. Snake mobbing by California ground squirrels: Adaptive variation and ontogeny.Behaviour 62(1–2):50–69.

    Google Scholar 

  • Roe. Anne. 1953.The Making of a Scientist. Dodd, Mead, N.Y. 244 pp.

    Google Scholar 

  • Sofaer, J. A. 1973. A model relating developmental interaction and differential evolutionary reduction of tooth size.Evolution 27(3):427–434.

    Article  Google Scholar 

  • Sonneborn, T. M. 1968, H. J. Muller, crusader for human betterment. Science 162:772–776.

    Google Scholar 

  • Stone, Anne C., R. Bonner, C. M. Lewis and Michael Hammer. 2000. What subspecies are they? Mitochondrial DNA and Y-chromosome diversity in captive Fan troglodyte.American Journal of Physical Anthropology Supplement 30. pp. 293–294.

    Google Scholar 

  • Stone, Anne C., Robert C. Griffiths, Stephen L. Zegura and Michael F. Hammer. 2002. High leveis of Y-chromosome nucleotide diversity in the genus Fan.Proceedings of the National Academy of Sciences U.S.A. 99(1):43–48.

    Article  Google Scholar 

  • Tattersall, lan. 1986. Species recognition in human paleontology.Journal of Human Evolution 15(3): 165–175. 1995. The Fossil Trail: How We Know What We Think We Know

    Article  Google Scholar 

  • —.About Human Evolution. Oxford University Press, N.Y. 276 pp.

    Google Scholar 

  • —. 2000 Once we were not alone.Scientific American 282(1):56–62.

    Article  Google Scholar 

  • —. 2003. An interview with lan Tattersall, co-curator of-The First Europeans: The First Treasures from the Hills of Atapuerca”.Natural History 112(1): 17.

    Google Scholar 

  • Tattersall, lan. and Jeffrey H. Schwartz., 999. Hominids and hybrids: The place of Neanderthals in human evolution.Proceedings of the National Academy of Sciences U.S.A. 96(13):7117–7119.

    Article  Google Scholar 

  • Towers, Steven R., and Ricihard G. Coss. 1991. Antisnake behavior of Columbia ground squirreis (Spermophilus columbianus).Journal of Mammalogy 72(4):776–783.

    Google Scholar 

  • Vandermeersch, Bernard. 1985.The origin of the Neandertals. In Eric Delson (ed.) Ancestors: The Hard Evidence. Alan Liss, N.Y. pp. 306–309.

    Google Scholar 

  • White, Tim D., Berhane Asfaw, David DeGusta, Henry Gilbert, Gary D. Richards, Gen Suwa and F. Clark Howell. 2003. Pleistocene Homo sapiens from Middle Awash. Ethiopia.Nature 423: 742–747.

    Article  Google Scholar 

  • Wilkens Horst. 1971. Genetic interpretation of regressive evolutionary processes: Studies on hybrid eyes of two Astayanax cave populations (Characidae, Pisces).Evolution 25(3):530–544.

    Article  Google Scholar 

  • —. 1988. Evolution and genetics of epigean and cave Astayanax (Characidae. Pisces).Evolutionary Biology 23:271–367.

    Google Scholar 

  • Ziihào Joào, and Francesco d'Errico. 1999. The chronology and taphonomy of the earliest Aurignacian and its implications for Neandertal extinction.Journal of World Prehistory 13(1): 1–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loring, B.C. “Neutral theory” and the dynamics of the evolution of “Modern” human morphology. Hum. Evol. 20, 19–38 (2005). https://doi.org/10.1007/BF02438895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02438895

Keywords

Navigation