Skip to main content
Log in

On the stability of solitary-wave solutions of model equations for long waves

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

After a review of the existing state of affairs, an improvement is made in the stability theory for solitary-wave solutions of evolution equations of Korteweg-de Vries-type modelling the propagation of small-amplitude long waves. It is shown that the bulk of the solution emerging from initial data that is a small perturbation of an exact solitary wave travels at a speed close to that of the unperturbed solitary wave. This not unexpected result lends credibility to the presumption that the solution emanating from a perturbed solitary wave consists mainly of a nearby solitary wave. The result makes use of the existing stability theory together with certain small refinements, coupled with a new expression for the speed of propagation of the disturbance. The idea behind our result is also shown to be effective in the context of one-dimensional regularized long-wave equations and multidimensional nonlinear Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albert, J. P. 1992. Positivity properties and stability of solitary-wave solutions of model equations for long waves.Commun. Partial Differential Equations 17, 1–22.

    MATH  MathSciNet  Google Scholar 

  • Albert, J. P. and Bona, J. L. 1991. Total positivity and the stability of internal waves in fluids of finite depth.IMA J. Appl. Math. 46, 1–19.

    MathSciNet  MATH  Google Scholar 

  • Albert, J. P., Bona, J. L., and Henry, D. 1987. Sufficient conditions for stability of solitary-wave solutions of model equations for long waves.Phys. D 24, 343–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Benjamin, T. B. 1972. The stability of solitary waves.Proc. Roy. Soc. London A 328, 153–183.

    MathSciNet  Google Scholar 

  • Benjamin, T. B., Bona, J. L., and Bose, D. K. 1990. Solitary-wave solutions of nonlinear problems.Philos. Trans. Roy. Soc. London A 331, 195–244.

    MathSciNet  MATH  Google Scholar 

  • Bennett, D. P., Brown, R. W., Stansfield, S. E., Stroughair, J. D., and Bona, J. L. 1983. The stability of internal solitary waves in stratified fluids.Math. Proc. Cambridge Philos. Soc. 94, 351–379.

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki, H., Lions, P.-L., and Peletier, L. A. 1981. An ODE approach to the existence of positive solutions for semilinear problems in ℝN.Indiana Univ. Math. J. 30, 141–157.

    Article  MathSciNet  MATH  Google Scholar 

  • Bona, J. L. 1975. On the stability theory of solitary waves.Proc. Roy. Soc. London A 349, 363–374.

    MathSciNet  Google Scholar 

  • Bona, J. L., Dougalis, V. A., and Karakashian, O. A. 1986. Fully discrete Galerkin methods for the Korteweg-de Vries equation.J. Comp. Math. Appl. 12A, 859–884.

    Article  MathSciNet  Google Scholar 

  • Bona, J. L., Dougalis, V. A., Karakashian, O. A., and McKinney, W. 1991. Fully-discrete methods with grid refinement for the generalized Korteweg-de Vries equation. InViscous Profiles and Numerical Methods for Shock Waves (M. Shearer, ed.), pp. 1–11. SIAM, Philadelphia.

    Google Scholar 

  • Bona, J. L., Dougalis, V. A., Karakashian, O. A., and McKinney, W. 1994. Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation. To appear.

  • Bona, J. L., Dougalis, V. A., Karakashian, O. A., and McKinney, W. 1993. The effect of dissipation on solutions of the generalized Korteweg-de Vries equation. Unpublished.

  • Bona, J. L. and Sachs, R. 1988. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation.Commun. Math. Phys. 118, 15–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Bona, J. L., Souganidis, P. E., and Strauss, W. A. 1987. Stability and instability of solitary waves of KdV type.Proc. Roy. Soc. London A 411, 395–412.

    Article  MathSciNet  MATH  Google Scholar 

  • Cazenave, T. 1989.An Introduction to Nonlinear Schrödinger Equations. Textos de Métodos Matemáticas22. UFRJ, Rio de Janiero.

  • Cazenave, T. and Lions, P.-L. 1982. Orbital stability of standing waves for some nonlinear Schrödinger equations.Commun. Math. Phys. 85, 549–561.

    Article  MathSciNet  MATH  Google Scholar 

  • Eckhaus, W. and Schuur, P. 1983. The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions.Math. Methods Appl. Sci. 5, 97–116.

    MathSciNet  MATH  Google Scholar 

  • Grillakis, M., Shatah, J., and Strauss, W. A. 1987. Stability of solitary waves in the presence of symmetry, I.J. Funct. Anal. 74, 160–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Landau, L. D. and Lifshitz, E. M. 1958.Quantum Mechanics—Nonrelativistic Theory. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Maddocks, J. and Sachs, R. 1993. On the stability of the KdV multi-solitons.Commun. Pure Appl. Math. 46 (6), 867–901.

    MathSciNet  MATH  Google Scholar 

  • Pego, R. and Weinstein, M. 1992. On asymptotic stability of solitary waves.Phys. Lett. A 162, 263–68.

    Article  Google Scholar 

  • Pego, R. and Weinstein, M. 1993. Eigenvalues and instability of solitary waves.Philos. Trans. Roy. Soc. London A 340, 47–94.

    MathSciNet  Google Scholar 

  • Scott, A. C., Chu, F. Y., and McLaughlin, D. W. 1973. The soliton: a new concept in applied science.Proc. IEEE 61 (10), 1443–1483.

    Article  MathSciNet  Google Scholar 

  • Strauss, W. A. 1977. Existence of solitary waves in higher dimensions.Commun. Math. Phys. 55, 149–162.

    Article  MATH  MathSciNet  Google Scholar 

  • Strauss, W. A. and Souganidis, P. E., 1990. Instability of a class of dispersive solitary waves.Proc. Roy. Soc. Edinburgh 114A, 195–212.

    MathSciNet  Google Scholar 

  • Warchall, H. 1986. A wave operator for the scattering of solitary waves in multiple spatial dimensions. InNonlinear Systems of Partial Differential Equations in Applied Mathematics (B. Nicolaenko, D. D. Holm, and J. M. Hyman, eds.).Lectures on Applied Math.23. American Math. Soc., Providence.

    Google Scholar 

  • Weinstein, M. 1986. Lyapunov stability of ground states of nonlinear dispersive evolution equations.Commun. Pure Appl. Math. 39, 51–68.

    MATH  MathSciNet  Google Scholar 

  • Weinstein, M. 1987. Existence and dynamic stability of solitary-wave solutions of equations arising in long wave propagation.Commun. Partial Differential Equations 12, 1133–1173.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Thanasis Fokas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bona, J.L., Soyeur, A. On the stability of solitary-wave solutions of model equations for long waves. J Nonlinear Sci 4, 449–470 (1994). https://doi.org/10.1007/BF02430641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430641

Key words

AMS Subject Classifications

Navigation