Skip to main content
Log in

The dynamics ofn weakly coupled identical oscillators

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

We present a framework for analysing arbitrary networks of identical dissipative oscillators assuming weak coupling. Using the symmetry of the network, we find dynamically invariant regions in the phase space existing purely by virtue of their spatio-temporal symmetry (the temporal symmetry corresponds to phase shifts). We focus on arrays which are symmetric under all permutations of the oscillators (this arises with global coupling) and also on rings of oscillators with both directed and bidirectional coupling. For these examples, we classify all spatio-temporal symmetries, including limit cycle solutions such as in-phase oscillation and those involving phase shifts. We also show the existence of “submaximal” limit cycle solutions under generic conditions. The canonical invariant region of the phase space is defined and used to investigate the dynamics. We discuss how the limit cycles lose and gain stability, and how symmetry can give rise to structurally stable heteroclinic cycles, a phenomenon not generically found in systems without symmetry. We also investigate how certain types of coupling (including linear coupling between oscillators with symmetric waveforms) can give rise to degenerate behaviour, where the oscillators decouple into smaller groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. C. Alexander and G. Auchmuty. Global bifurcations of phase-locked oscillators.Arch. Rat. Mech. Anal., 93:253–270, 1986.

    Article  MathSciNet  Google Scholar 

  2. J. C. Alexander and B. Fiedler. Global bifurcations of coupled symmetric oscillators. In Ladas, Dafermos and Papanicolaou, editors,Proceedings of the Equadiff Conference, volume 118 ofLecture Notes in Pure and Applied Mathematics (Differential Equations), pages 7–26. AMS, Providence, RI, 1987.

    Google Scholar 

  3. A. A. Andronov, A. A. Vitt, and S. E. Chaikin.Theory of oscillators. Pergamon, Oxford, 1966.

    Google Scholar 

  4. D. G. Aronson, E. J. Doedel, and H. G. Othmer. The dynamics of coupled current-biased Josephson junctions—part ii.International Journal of Bifurcation and Chaos, 1:51–66, 1991.

    Article  MathSciNet  Google Scholar 

  5. D. G. Aronson, M. Golubitsky, and M. Krupa. Coupled arrays of Josephson junctions and bifurcations of maps with S(n) symmetry.Nonlinearity, 4:8 G1–902 (1991).

    MathSciNet  Google Scholar 

  6. P. Ashwin, G. P. King, and J. W. Swift. Three identical oscillators with symmetric coupling.Nonlinearity, 3:585–603, 1990.

    Article  MathSciNet  Google Scholar 

  7. C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay. Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos.Physica D, 24:387–475, 1991.

    Article  MathSciNet  Google Scholar 

  8. E. J. Doedel, D. G. Aronson, and H. G. Othmer. The dynamics of coupled current-biased Josephson junctions: part 1.IEEE CAS, 35:810–817, 1988.

    MathSciNet  Google Scholar 

  9. T. Endo and S. Mori. Mode analysis of a ring of a large number of mutually coupled van der pol oscillators.IEEE CAS, 25:7–18, 1978.

    Google Scholar 

  10. G. B. Ermentrout. The behavior of rings of coupled oscillators.J. Math. Biol., 23:55–74, 1985.

    MATH  MathSciNet  Google Scholar 

  11. G. B. Ermentrout and N. Kopell. Frequency plateaus in a chain of weakly coupled oscillators.SIAM J. Math. Anal., 15:215–237, 1984.

    Article  MathSciNet  Google Scholar 

  12. B. Fiedler,Global bifurcations of periodic solutions with symmetry, volume 1309 ofSpringer lecture notes in mathematics. Springer, Berlin, 1988.

    Google Scholar 

  13. M. J. Field and R. W. Richardson. Symmetry breaking and the maximal isotropy subgroup conjecture for reflection groups.Arch. Rat. Mech. Anal., 105:61–94, 1989.

    Article  MathSciNet  Google Scholar 

  14. M. Golubitsky and I. N. Stewart. Hopf bifurcation in the presence of symmetry.Arch. Rat. Mech. Anal., 87:107–165, 1985.

    Article  MathSciNet  Google Scholar 

  15. M. Golubitsky and I. N. Stewart. Hopf bifurcation with dihedral group symmetry. InMultiparameter bifurcation theory, volume 56 ofContemporary Maths, pages 131–173. AMS, Providence, RI, 1985.

    Google Scholar 

  16. M. Golubitsky, I. N. Stewart, and D. Schaeffer.Groups and singularities in bifurcation theory, volume 2. App. Math. Sci. 69. Springer, New York, 1988.

    Google Scholar 

  17. J. Grasman and M. J. W. Jansen. Mutually synchronised relaxation oscillators as prototypes of oscillating systems in biology.J. Math. Biol., 7:171–197, 1988.

    MathSciNet  Google Scholar 

  18. J. Guckenheimer and P. Holmes.Nonlinear oscillations, dynamical systems and bifurcations of vector fields. App. Math. Sci. 42. Springer, New York, 1983.

    Google Scholar 

  19. P. Hadley.Dynamics of Josephson junction arrays. Ph.D. thesis, Dept. of Applied Physics, Stanford University, 1989.

  20. P. Hadley, M. R. Beasley, and K. Wisenfeld. Phase locking of Josephson junction series arrays.Phys. Rev. B, 38:8712–8719, 1988.

    Article  Google Scholar 

  21. C. Hayashi.Nonlinear oscillations in physical systems. McGraw Hill, 1964. Reprinted 1985 by Princeton University Press.

  22. M. Hirsch, C. Pugh, and M. Shub.Invariant manifolds. LNM 583. Springer, Berlin, 1977.

    Google Scholar 

  23. N. Kopell and G. B. Ermentrout. Symmetry and phase locking in chains of weakly coupled oscillators.Comm. Pure App. Math., 39:623–660, 1986.

    MathSciNet  Google Scholar 

  24. D. Linkens. Nonlinear circuit mode analysis.IEEE Proc., 130A:69–87, 1983.

    MathSciNet  Google Scholar 

  25. J. D. Murray.Mathematical biology, Biomathematics, 13. Springer, Berlin, 1989.

    Google Scholar 

  26. H. G. Othmer and L. E. Scriven. Instability and dynamic pattern formation in cellular networks.J. Theor. Biology, 32:507–537, 1971.

    Article  Google Scholar 

  27. J. A. Sanders and F. Verhulst.Averaging methods in nonlinear dynamical systems. App. Math. Sci. 59. Springer, New York, 1985.

    Google Scholar 

  28. J. W. Swift. Hopf bifurcation with the symmetry of the square.Nonlinearity, 1:333–377, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. W. Swift, S. H. Strogatz, and K. Wiesenfeld. Averaging of globally coupled oscillators. Preprint, NAU, 1991.

  30. K. Y. Tsang, R. E. Mirollo, S. H. Strogatz, and K. Wiesenfeld. Slow dynamics in a globally coupled oscillator array. Submitted toPhysica D, 1990.

  31. K. Y. Tsang and I. B. Schwartz. Interhyperhedral diffusion in Josephson junction arrays. Preprint, 1991.

  32. A. M. Turing. The chemical basis of morphogenesis.Phil. Trans. Roy. Soc. Lond. B, 237:37–72, 1952.

    Google Scholar 

  33. B. van der Pol. On relaxation oscillations.Phil. Mag., 7–2:978–992, 1926.

    Google Scholar 

  34. B. van der Pol. Forced oscillations in a circuit with nonlinear resistance.Phil. Mag., 7–3:18–38, 1927.

    Google Scholar 

  35. K. Wiesenfeld and P. Hadley. Attractor crowding in oscillator arrays.Phys. Rev. Lett., 62:1335–1338, 1988.

    Article  MathSciNet  Google Scholar 

  36. S. Wiggins.Global bifurcations and chaos. App. Math. Sci. 73. Springer, New York, 1988.

    Google Scholar 

  37. A. T. Winfree. Biological rhythms and the behaviour of populations of coupled oscillators.Theoretical Biology, 16:15–42, 1967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashwin, P., Swift, J.W. The dynamics ofn weakly coupled identical oscillators. J Nonlinear Sci 2, 69–108 (1992). https://doi.org/10.1007/BF02429852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02429852

Key words

AMS/MOS classification numbers

Navigation