Skip to main content
Log in

The electronic substituent influence on the thermally allowed electrocyclic interconversion cyclobutene/butadiene. A MNDO study

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The effects of donor/acceptor substitution on the conrotatory cyclobutene/butadiene interconversion have not yet been experimentally studied. MNDO Synchronous Transit/MINIMAX calculations for all possible combinations of NH2/NH3 + 3 groups at the fissile single bond reveal very large substituent effects on the opening reactions and reverse cyclisations. Diamino(1b/2b), diammonio-(1c/2c) and amino-ammonio-substitutions (1d/2d) change the activation energy of the reference ring opening reaction (1a2a) from 49.9 kcal/mol to 34.7, 29.8 and 26.0 kcal/mol, respectively. This rate enhancement parallels the monotone shift of the transition state pathcoordinate towards the cyclobutenes. Relative to the electrocyclic reactions1a/2a1c/2c the calculated result for1d/2d is in opposition to the Hammond postulate, but a detailed analysis of the reaction paths suggests a mechanistic deviation in this kind of reaction. The calculated data for the reference process (1a/2a) and the oxetene isomerisation (3/4) when compared with available experimental data indicate that the MNDO calculations accurately reflect the experimental trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann, R., Woodward, R. B.: Die Erhaltung der Orbital-Symmetrie. Weinheim: Verlag. Chemie 1969

    Google Scholar 

  2. Review: Fleming, I.: Frontier orbitals and organic chemical reactions. London: Wiley, 1976

    Google Scholar 

  3. Cooper, W., Walters, W. D.: J. Am. Chem. Soc.80, 4220 (1958)

    Article  CAS  Google Scholar 

  4. Freedman, H. H., Doorakian, G. A., Doorakian, G. A., Sandel, V. R.: J. Am. Chem. Soc.87, 3019 (1965)

    Article  CAS  Google Scholar 

  5. Klumpp, G. W.: Reaktivitaet in der organischen Chemie, Bd. II. Stuttgart: G. Thieme Verlag 1978; and literature cited therein

    Google Scholar 

  6. Huisgen, R.: Angew. Chem.92, 979 (1980);

    CAS  Google Scholar 

  7. Taylor, E. C., Turchi, I. C.: Chem. Rev.79, 181 (1979)

    Article  CAS  Google Scholar 

  8. Friedrich, L. E., Schuster, G. B.: J. Am. Chem. Soc.93, 4602 (1971)

    Article  CAS  Google Scholar 

  9. Fieser, L., Fieser, M.: Organische Chemie, 2nd ed., p. 1450. Weinheim: Verlag Chemie 1972

    Google Scholar 

  10. Althoff, H., Bornowski, B., Daehne, S.: J. Pract. Chem.319, 890 (1977);

    Article  CAS  Google Scholar 

  11. Jutz, C., Wagner, R. M., Loebering, H. G.: Angew. Chem.86, 781 (1976);

    Google Scholar 

  12. Jutz, C., Wagner, R. M., Kraatz, A., Loebering, H.: Liebigs Ann. Chem. 874 (1975)

  13. Jensen, A.: Dissertation planned at the J. Gutenberg Universitaet Mainz. The reason for these difficulties is that semiempirical calculations, based on the σ — π-separation cannot be satisfactorily parameterized for heteroatoms. Moreover, calculations of this type are limited to planar molecules and ring closure reactions only

  14. Epiotis, N. D.: J. Am. Chem. Soc.95, 1200 (1973);

    Article  CAS  Google Scholar 

  15. Epiotis, N. D.: Angew. Chem.86, 825 (1974)

    CAS  Google Scholar 

  16. Carpenter, B.: Tetrahedron34, 1877 (1978)

    Article  CAS  Google Scholar 

  17. Hsu, K., Buenker, R. J., Peyerimhoff, S.: J. Am. Chem. Soc.93, 2117 (1971);94, 5639 (1972);

    Article  Google Scholar 

  18. McIver, Jr., J. W., Kormornicki, A.: J. Am. Chem. Soc.94, 2625 (1972);

    Article  CAS  Google Scholar 

  19. refer to 14a); d) refer to 14c)

  20. Dewar, M. J. S., Thiel, W.: J. Am. Chem. Soc.99, 4907 (1977);

    Article  CAS  Google Scholar 

  21. Dewar, M. J. S., McKee, M. L., Rzepa, H. S.: J. Chem. Soc.100, 3607 (1978);

    Article  CAS  Google Scholar 

  22. Dewar, M. J. S., Thiel, W.: J. Am. Chem. Soc.100, 7499 (1978)

    Article  CAS  Google Scholar 

  23. Jensen, A.: Theoret. Chim. Acta (Berl.)63, 269 (1983);

    Article  CAS  Google Scholar 

  24. Halgren, T. A., Pepperberg, I. M., Lipscomb, W. N.: J. Am. Chem. Soc.97, 1248 (1975);

    Article  CAS  Google Scholar 

  25. Halgren, T. A., Lipscomb, W. N.: Chem. Phys. Letters49, 225 (1977)

    Article  CAS  Google Scholar 

  26. Joergensen, W. L. Salem, L.: The organic chemist’s book of orbitals. New York: Academic Press 1973

    Google Scholar 

  27. Kemister, G., Pross, A., Radom, L., Taft, R. W.: J. Comput. Chem.2, 470 (1981)

    Article  CAS  Google Scholar 

  28. Steiner, E.: The determination and interpretation of molecular wave functions. Cambridge: University Press 1976

    Google Scholar 

  29. Mulliken, R. S.: J. Chem. Phys.23, 1833 (1955)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, A., Kunz, H. The electronic substituent influence on the thermally allowed electrocyclic interconversion cyclobutene/butadiene. A MNDO study. Theoret. Chim. Acta 65, 33–47 (1984). https://doi.org/10.1007/BF02427578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427578

Key words

Navigation