Skip to main content
Log in

Ion migration energies and color center absorption in hydroxyapatite

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

By modelling a hydroxyapatite crystal lattice as a finite cluster of atoms surrounded by an array of point ions, molecular orbital MS-Xα calculations point to differences in fluoride and hydroxyl migration energies. Despite the fluoride ion being more tightly bound to the lattice, it is in fact more mobile. Color center optical absorption is predicted to be in the infrared region of the spectrum for hydroxyapatite, whereas for fluorapatite the absorption peak of a vacancy is predicted to within 2% of the observed peak in the optical region. This result is discussed in terms of experimental studies of bonding between the calcified and organic phases of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, K.H.: Scattered wave theory of the chemical bond. In P.O. Lowdin (ed.): Advances in Quantum Chemistry, pp. 143–185. Academic Press, New York, 1973

    Google Scholar 

  2. Slater, J.C.: In P.O. Lowdin (ed.): Advances in Quantum Chemistry, vol. 6, p. 1. Academic Press, New York, 1973

    Google Scholar 

  3. Messmer, R.P.: Cluster model theory and its application to metal surface-adsorbate systems. In G. Ertland, T.N. Rhodin (eds.): The Nature of the Surface Chemical Bond. North-Holland Press, Amsterdam, 1978

    Google Scholar 

  4. Tse, C., Welch, D.O., Royce, B.S.H.: The migration of F, OH, and O2− ions in apatite, Calcif. Tissue Res.13:47–52, 1973

    Article  CAS  PubMed  Google Scholar 

  5. Messmer, R.P., Watkins, G.D.: Molecular orbital treatment for deep levels in semiconductors: substitutional nitrogen and the lattice vacancy in diamond, Physiol. Rev. B7:2568–2590, 1973

    Article  CAS  Google Scholar 

  6. Herman, F., Salahub, D.R., Messmer, R.P.: Xα scatteredwave calculations for dimers and trimers of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ), Physiol. Rev. B16:2453–2465, 1977

    Article  CAS  Google Scholar 

  7. Johnson, K.H., Smith, F.C.: Chemical bonding of a molecular transition-metal ion in a crystalline environment, Physiol. Rev. B5:831–843, 1972

    Article  Google Scholar 

  8. Michels, H.H., Hobbs, R.H., Wright, L.A., Connolly, J.W.D.: Electronic structure of excimer molecular lasers, Int. J. Quant. Chem.13:169–187, 1978

    Article  CAS  Google Scholar 

  9. Yu, H., DeSeqeira, M.L., Connolly, J.W.D.: Calculation of the electronic structure of color centers by the multiple scattering method, Physiol. Rev. B14:772–779, 1976

    Article  CAS  Google Scholar 

  10. Norman, J.G.: SCF-Xα calculations on PH3 using a non-empirical scheme for choosing overlapping sphere radii, J. Chem. Phys.61:4630–4635, 1974

    Article  Google Scholar 

  11. Norman, J.G.: Non-empirical versus empirical choices for overlapping sphere radii ratios in SCF-Xα-SW calculations on ClO4 and SO2, Mol. Phys.31:1191–1197, 1976

    CAS  Google Scholar 

  12. Lamson, S.H.: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N.Y., 1978

    Google Scholar 

  13. Piper, W.W., Kravitz, L.C., Swank, R.K.: Axially symmetric paramagnetic color centers in fluorapatite, Physiol. Rev.138:A1802-A1814, 1965

    Article  Google Scholar 

  14. Swank, R.K.: Color centers in x-irradiated halophosphate crystals, Physiol. Rev.135:A266-A275, 1965

    Google Scholar 

  15. Warren, R.W.: Defect centers in calcium fluorophosphate, Physiol. Rev. B6:4679–4689, 1972

    Article  CAS  Google Scholar 

  16. Sudarsanan, K., Mackie, P.E., Young, R.A.: Comparison of synthetic and mineral fluorapatite, Ca5(PO4)3F in crystallographic detail, Mat. Res. Bull.7:1331–1338, 1972

    Article  CAS  Google Scholar 

  17. Sudarsanan, K., Young, R.A.: Significant precision in crystal structure details: Holly Springs hydroxyapatite, Acta Cryst.B25:1534–1543, 1969

    Google Scholar 

  18. Fowler, B.O.: International Symposium on Structural Properties of Hydroxyapatite and Related Compounds, National Bureau of Standards, Gaithersburg, Maryland 1968

    Google Scholar 

  19. Young, R.A., Van der Lugt, W., Elliott, J.C.: Mechanism for fluorine inhibition of diffussion in hydroxyapatite, Nature223:729–730, 1969

    CAS  PubMed  Google Scholar 

  20. Koberle, G., Terrile, C., Panepucci, H.C., Mascarenhas, S.: On the paramagnetism of bone irradiated in vivo, An. Acad. Brasil. Cienc.45:157–160, 1973

    Google Scholar 

  21. Panepucci, H., Mascarenhas, S., Terrile, C.: Bone as a dosimeter. In S. Watanabe (ed.): Proc. 1st Latin American Cong. Phys. Med., Univ. Sao Paulo, Brazil, 1972

    Google Scholar 

  22. Panepucci, H., Farach, H.A.: ESR spectra of quasi randomly oriented centers: application to radiation damage centers in bone, Med. Phys.4:46–48, 1977

    Article  CAS  PubMed  Google Scholar 

  23. Behari, J., Guha, S.K., Agarwal, P.N.: Absorption spectra of bone, Calcif. Tissue Res.23:113–114, 1977

    Article  CAS  PubMed  Google Scholar 

  24. Peckauskas, R.A., Termine, J.D., Pullman, I: ESR investigation of the binding of acidic biopolymers to synthetic apatite, Biopolymers15:569–581, 1976

    Article  CAS  PubMed  Google Scholar 

  25. Termine, J.D.: Ph.D. thesis, Cornell University, Ithaca, N.Y., 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamson, S.H., Harper, R.A. & Katz, J.L. Ion migration energies and color center absorption in hydroxyapatite. Calcif Tissue Int 30, 21–25 (1980). https://doi.org/10.1007/BF02408602

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02408602

Key words

Navigation