Skip to main content
Log in

Electrical conductivity of Sr1−xTiO3−δ materialsmaterials

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The high temperature conductivity of polycrystalline Sr1−xTiO3−δ samples in air was found to be lower than the conductivity of SrTiO3 samples. However, the dependence of the electrical conductivity on the oxygen partial pressure showed that this trend can be reverted under reducing conditions. Both trends contradict the expected effects of A-site deficiency on the defect chemistry. Differences in average grain sizes give a plausible explanation for these findings. The dependence of the conductivity on the oxygen partial pressure suggests that p-type conductivity is dominant in air, for every sample, and one can thus assume that the number of grain boundaries plays a negative role on this contribution. Electrochemical permeability measurements confirmed that the ionic transport number of strontium titanate in air remains small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

6. References

  1. J. Gerblinger and H. Meixner, Sensors and ActuatorsB4, 99 (1991).

    CAS  Google Scholar 

  2. G. Horvath, J. Gerblinger, H. Meixner and J. Giber, Sensors and ActuatorsB4, 93 (1996).

    Google Scholar 

  3. T. Inoue, N. Seki, J. Kaminae, K. Eguchi, and H. Arai, Solid State Ionics48, 283 (1991).

    Article  CAS  Google Scholar 

  4. U. Schonauer, Sensors and ActuatorsB4, 431 (1991).

    Google Scholar 

  5. Waser, J. Amer. Ceram. Soc.74 1934 (1991).

    Article  CAS  Google Scholar 

  6. J.T.S. Irvine, R.P. Slater, P.A. Wright, Ionics2, 213 (1996).

    Article  CAS  Google Scholar 

  7. S. Steinsvik, R. Budge, J. Gjonnes, J. Tafto and T. Norby, J. Phys. Chem. Solids58, 969 (1997)

    CAS  Google Scholar 

  8. S.G. Cho and P.F. Johnson, J. Mat. Sci.29, 4866 (1994)

    CAS  Google Scholar 

  9. R. Moos and K.H. Härdtl, J. Amer. Ceram. Soc.78, 2569 (1995).

    Article  CAS  Google Scholar 

  10. N.H. Chan, R.K. Sharma and D.M. Smyth,128, 1762 (1981)

    Google Scholar 

  11. J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Ionics3, 16–22 (1997).

    Article  CAS  Google Scholar 

  12. S. Witek, D.M. Smyth, H. Pickup, J. Amer. Ceram. Soc.67, 372 (1984).

    CAS  Google Scholar 

  13. R.M.C. Marques, F. M. B. Marques, J. R. Frade, Solid State Ionics,73, 15 (1994).

    CAS  Google Scholar 

  14. R. Waser, J. Amer. Ceram. Soc.74, 1934 (1991).

    Article  CAS  Google Scholar 

  15. M. Vollman and R. Waser, J. Amer. Ceram. Soc.,77, 235 (1994).

    Article  CAS  Google Scholar 

  16. M. Vollman and R. Waser, J. of Electroceramics1, 51 (1997).

    Google Scholar 

  17. Y.M. Chiang, T. Takagi, J. Amer. Ceram. Soc.73, 3278 (1990).

    CAS  Google Scholar 

  18. S.B. Desu and D.A. Payne, J. Amer. Ceram. Soc.73, 3398 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrantes, J.C.C., Ferreira, A.A.L., Labrincha, J.A. et al. Electrical conductivity of Sr1−xTiO3−δ materialsmaterials. Ionics 3, 436–441 (1997). https://doi.org/10.1007/BF02375721

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375721

Keywords

Navigation