Skip to main content
Log in

Bioreactor based on suspended particles of immobilized enzyme

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A bioreactor for blood detoxification was developed in which oscillation-induced secondary flows suspend particles of immobilized enzyme in a reactor operating at clinically useful flowrates. Torsional oscillation of the reactor about its axis created a pair of counterrotating toroidal vortices which were readily observed in flow-visualization studies. Oscillation frequencies were selected to provide spatially uniform particle dispersion, as assessed visually. As a model system, blood deheparinization by reactors containing heparinase immobilized to agarose particles was investigated. Identical deheparinization profiles were observed in the continuous-flow reactor and in independent batch studies, done in well mixed test tubes of blood, demonstrating that the oscillating reactor design minimizes external mass transfer limitations. Identical heparin neutralization profiles and rates were also observed in the first and the second of consecutive heparin neutralization studies (0–2h and 2–4h, respectively) demonstrating an effective half-life of the immobilized enzyme in the oscillating reactor of at least 4 h. No significant decrease in red or white blood cell count, platelet count, or hematocrit, and clinically acceptable levels of plasma hemoglobin and activated complement were observed with 2 h (20 passes) ofin vitro recirculation of human blood through the reactor. High, stable efficacy, operational stability, and excellent biocompatibility are attributed to secondary flow induced liquid-particle mixing within the oscillating reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

exponent of least squares fit of heparin neutralization profile:S=S 0 exp(−at)

d p :

particle diameter

E:

enzyme (heparinase) specific activity at timezero (U/cm3 packed gel)

f :

reactor oscillation frequency

Q :

flowrate

Re:

Reynolds number

S :

substrate (heparin) concentration

S 0 :

substrate concentration at time-zero

t 1/2 :

effective half-life of immobilized heparinase

V p :

volume of immobilized enzyme particles

V pl :

total volume of plasma in the system

V p /V pl :

volume fraction of immobilized enzyme particles

v :

flow velocity (cm/s)

μ:

viscosity

ν:

kinematic viscosity

ρ:

density

Θ:

angle through which reactor oscillates (rads)

ω:

angular velocity (rads/s)

References

  1. Bernstein, H.; Yang, V.; Lund, D.; Randhawa, M.; Harmon, W.; Langer, R. Extracorporeal enzymatic heparin removal: Use in a sheep dialysis model. Kidney Int. 32: 452–463; 1987.

    CAS  PubMed  Google Scholar 

  2. Bernstein, H.; Yang, V.; Langer, R. Immobilized heparinase:In vitro reactor model. Biotech. & Bioeng. 30:239–250; 1987.

    CAS  Google Scholar 

  3. Bernstein, H.; Langer, R.Ex vivo model of an immobilized enzyme reactor. PNAS. 85:8751–8755; 1988.

    CAS  PubMed  Google Scholar 

  4. Caro, C.G.; Pedley, T.J.; Schroter, R.C.; Seed, W.A. The mechanics of the circulation. New York: Oxford University Press; 1978.

    Google Scholar 

  5. Comfort, A.R.; Berkowitz, S.; Albert, E.; Langer, R. Immobilized enzyme cellulose hollow fibers. Biotech. and Bioeng. 34:1383–1390; 1989.

    CAS  Google Scholar 

  6. Comfort, A.R.; Mullon, C.J.; Langer, R. The influence of bond chemistry on immobilized enzyme systems forex vivo use. Biotech. & Bioeng. 32:554–563; 1988.

    CAS  Google Scholar 

  7. Drinker, P.A.; Bartlett, R.H.; Bialer, R.M.; Noyes, B.S. Augmentation of membrane gas transfer by induced secondary flows. Surgery. 66:775–781; 1969.

    CAS  PubMed  Google Scholar 

  8. Drinker, P.A. Progress in membrane oxygenator design. Anesthesiol. 37:242–260; 1972.

    CAS  Google Scholar 

  9. Drinker, P.A.; Bartlett, R.H. Practical application of secondary flows in membrane oxygenators. In: Zapol, W.M.; Qvist, J., eds. Artificial lungs for acute respiratory failure. New York: Academic Press; 1976: pp. 69–86.

    Google Scholar 

  10. Ernst, E.; Eisenberg, J.; Matrai, A. “Normal” values in hemorheology. Haematologia 71:195–199; 1986.

    CAS  Google Scholar 

  11. Freed, L.E.; Sylvina, T.J.; Vunjak, G.V.; Drinker, P.A.; Langer, R. Extracorporeal deheparinization of lambs using an oscillating immobilized heparinase reactor. ASAIO; 1991: p. 96 (Abstract).

  12. Freed, L.E.; Vunjak-Novakovic, G.V.; Bernstein, H.; Cooney, C.L.; Langer, R. Kinetics of immobilized heparinase in human blood. Ann. Biomed. Eng. 21:67–76; 1993.

    CAS  PubMed  Google Scholar 

  13. Freed, L.E.; Vunjak, G.V.; Drinker, P.A.; Langer, R. A novel bioreactor based on suspended particles of agarose-immobilized species. Trans. Amer. Soc. Art. Int. Org. 34:732–738; 1988.

    CAS  Google Scholar 

  14. Freed, L.E.; Vunjak, G.V.; Drinker, P.A.; Langer, R. A bioreactor for blood detoxification: Fluid dynamics andex vivo modeling studies. In: Diller, K.R.; Shitzer, A., eds. Macroscopic and microscopic heat and mass transfer in biomedical engineering. New York: Elsevier; 1991: pp. 55–66.

    Google Scholar 

  15. Galliher, P.M.; Cooney, C.L.; Langer, R.; Linhardt, R.J. Heparinase production byflavobacterium heparinum. Appl. Environ. Microb. 41:360–365; 1981.

    CAS  Google Scholar 

  16. Hanson, E.L.; Bartlett, R.H.; Burns, N.E.; Shults, M.C.; LaCava, E.J.; Polet, H.; Drinker, P.A. Prolonged use of a membrane oxygenator in air-breathing and hypoxic lambs. Surgery 73:284–298; 1973.

    CAS  PubMed  Google Scholar 

  17. Henry, R.S. Clinical chemistry: Principles & techniques. New York: Harper and Row; 1974: pp. 1131–1141.

    Google Scholar 

  18. Horrow, J.C. Protamine: A review of its toxicity. Anesth. Analg. 64:348–361; 1985.

    CAS  PubMed  Google Scholar 

  19. Hugli, T.E.; Chenoweth, D.E. Techniques and significance of C3a and C5a measurement. In: Nakamura, R.M., ed. Future perspectives in clinical laboratory immunoassays. New York: Alan Liss Inc.; 1980: pp. 443–460.

    Google Scholar 

  20. Kirklin, J.K.; Barratt-Boyes, B.G. Whole body perfusion during cardiopulmonary bypass. In: Kirklin, J.K.; Barratt-Boyes, B.G., eds. Cardiac surgery. New York: Wiley & Sons; 1986: pp. 48–59.

    Google Scholar 

  21. Klein, M.D.; Langer, R. Immobilized enzymes in clinical medicine. Trends in Biotech. 4:179; 1986.

    CAS  Google Scholar 

  22. Klein, M.D. Neonatal ECMO. Trans. Am. Soc. Artif. Intern. Org. 34:39–42; 1988.

    CAS  Google Scholar 

  23. Langer, R.; Linhardt, R.J.; Hoffberg, S.; Larsen, A.K.; Cooney, C.L.; Tapper, D.; Klein, M. An enzymatic system for removing heparin in extracorporeal therapy. Science. 217:261; 1982.

    CAS  PubMed  Google Scholar 

  24. Larsen, A.K.; Linhardt, R.J.; Tapper, D.; Klein, M.; Langer, R. Effect of extracorporeal enzymatic deheparinization on formed blood components. Artif. Organs. 8:198–203; 1984.

    CAS  PubMed  Google Scholar 

  25. Margel, S.; Marcus, L. Specific hemoperfusion through agarose acrobeads. Appl. Biochem. Biotechnol. 12:37–66; 1986.

    CAS  PubMed  Google Scholar 

  26. Moss, R.A.; Benn, J.A.; Ghadar, F.K.; Drinker, P.A. Secondary flow and mass transfer in an oscillating torus. In: Bartlett, R.H.; Drinker, P.A.; Galletti, P.M., eds. Advances in cardiology: Mechanical devices for cardiopulmonary assistance. Vol. 6. New York: S. Karger; 1971; pp. 40–55.

    Google Scholar 

  27. Weast, R.C.; Astle, M.J., eds. Handbook of chemistry and physics. 63rd ed. Boca Raton: CRC Press; 1982: pp. C-312, D239–D240.

    Google Scholar 

  28. Wurzinger, L.J.; Schmid-Schoenbein, H. Surface abnormalities and conduit characteristics as a cause of blood trauma in artificial internal organs. Ann. NY Acad. Sci. 516:316–332; 1987.

    CAS  PubMed  Google Scholar 

  29. Yang, V.C.; Linhardt, R.J.; Bernstein, H.; Cooney, C.L.; Langer, R. Purification and characterization of heparinase fromflavobacterium heparinum. J. Biol. Chem. 260:1849–1857; 1985.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freed, L.E., Vunjak-Novakovic, G.V., Drinker, P.A. et al. Bioreactor based on suspended particles of immobilized enzyme. Ann Biomed Eng 21, 57–65 (1993). https://doi.org/10.1007/BF02368165

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368165

Keywords

Navigation