Skip to main content
Log in

On the number of rim hook tableaux

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A hooklength formula for the number of rim hook tableaux is used to obtain an inequality relating the number of rim hook tableaux of a given shape to the number of standard Young tableaux of the same shape. This provides an upper bound for a certain family of characters of the symmetric group. The analogues for shifted shapes and rooted trees are also given. Bibliography: 13 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Diaconis and M. Shahshahani, “Generating a random permutation with random transpositions,”Z. Wahrscheinlichkeitstheorie verw. Gebiete,57, 159–179 (1981).

    Article  MathSciNet  Google Scholar 

  2. S. Fomin and D. Stanton, “Rim hook lattices,” Report No. 23 (1991/92), Institut Mittag-Leffler (1992).

  3. J. S. Frame, G. de B. Robinson, and R. M. Thrall, “The hook graphs of the symmetric group,”Canad. J. Math.,6, 316–324 (1954).

    MathSciNet  Google Scholar 

  4. G. James and A. Kerber, “The representation theory of the symmetric group,” in:Encyclopedia of Mathematics and Its Applications, Vol. 16, G.-C. Rota (ed.), Addison-Wesley, Reading, MA (1981).

    Google Scholar 

  5. N. Lulov,Random Walks on the Symmetric Group generated by Conjugacy Classes, Ph. D. Thesis, Harverd University (1996).

  6. I. G. Macdonald,Symmetric Functions and Hall Polynomials, Oxford University Press (1979).

  7. A. O. Morris and A. K. Yasseen, “Some combinatorial results involving shifted Young diagrams,”Math. Proc. Camb. Phil. Soc.,99, 23–31 (1986).

    Google Scholar 

  8. G. de B. Robinson,Representation Theory of the Symmetric Group, University of Toronto Press (1961).

  9. B. E. Sagan, “The ubiquitous Young tableaux,” in:Invariant Theory and Young Tableaux, D. Stanton (ed.), Springer-Verlag (1990), pp. 262–298.

  10. B. E. Sagan,The Symmetric Group: Representations, Combinatorial Algorithms and Symmetric Functions, Wadsworth and Brooks/Cole (1991).

  11. R. P. Stanley, “The stable behaviour of some characters ofSL(n,ℂ),”Lin. Multilin. Algebra,16 3–27 (1984).

    MATH  MathSciNet  Google Scholar 

  12. J. Stembridge, “Canonical bases and self-evacuating tableaux,” Preprint.

  13. D. W. Stanton and D. E. White, “A Schensted algorithm for rim hook tableaux,”J. Combin. Theory. Ser. A,40 211–247 (1985).

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

Published inZapiski Nauchnykh Seminarov POMI, Vol. 223, 1995, pp. 219–226.

Partially supported by the NSF (DMS-9400914).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, S.V., Lulov, N. On the number of rim hook tableaux. J Math Sci 87, 4118–4123 (1997). https://doi.org/10.1007/BF02355806

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02355806

Keywords

Navigation