Skip to main content
Log in

Analysis of the O-wave in acute right ventricular apex impedance measurements with a standard pacing lead in animals

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Modern pacemakers (implantable devices used for maintaining an appropriate heart rate in patients) can use an intracardiac ventricular impedance signal for physiological cardiac stimulation control. Intracardiac ventricular impedance from nine animal subjects is analysed and presented (seven sheep: 49.0±6.5 kg, sinus rhythm 100.3±16.5 beats min−1, average impedance 629.8±72.6Ω; and two dogs: 30 kg each, sinus rhythm 86.0 beats min−1, 862.1Ω and 134.0 beats min−1, 1114.6Ω, respectively). The averaged curve and standard deviation curve of the impedance in sinus rhythm were analysed in MATLAB to clarify and study consistent impedance shape over one heart cycle. In eight of nine (89%) animal subjects, a consistent impedance slope change (notch) was observed in the early stage of the cardiac filling phase. This result was reproduced in an additional subject with simultaneous echocardiographical measurements of mitral valve blood flow. The notch occured soon after rapid early filling (E-wave in mitral flow) but prior to ventricular filling caused by atrial contraction, indicating that the impedance notch was caused by rapid ventricular filling and that it might be a sensed feature of diagnostic value. The intracardiac impedance notch in the present study had similar features to the non-invasive transthoracic impedance O-wave reported by others, and it is shown here that an O-wave is found in intracardiac impedance signals, strongly suggesting that the non-invasive O-wave is caused by cardiac events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, E., Combs, W., Willhaus, R., Condie, C., Bambl, E., Fotuhi, P., Pache, J, andSchomig, A. (1998): ‘A comparative study of activity and dual sensor: activity and minute ventilation pacing responses to ascending and descending stairs’,PACE,21, pp. 1862–1868

    Google Scholar 

  • Baan, J., Van Der Velde, E. T., De Bruin, H. G., Smeenk, G. J., Koops, J., andVan Duk, A. D. (1984): Temmerman, D., Senden, J., Buis, B., ‘Continuous measurement of left ventricular volume in animals and humans by conductance catheter’,Circulation,70, pp. 821–823

    Google Scholar 

  • Charles, R., Jones, B., andSpinelli, J. (1994): ‘Intracardiac Impedance as a rate limit-sensor’,PACE,17, 852

    Google Scholar 

  • Chirife, R. (1991): ‘Sensor for right ventricular volumes using the trailing edge voltage of a pulse generator output’,PACE,141, pp. 1821–1827

    Google Scholar 

  • Chirife, R., Ortega, D. F., andSalazar, A. I. (1993): ‘Feasibility of measuring relative right ventricular volumes and ejection fraction with implantable rhythm control devises’,PACE,16, pp. 1673–1683

    Google Scholar 

  • Das, G., andCarlblom, D. (1990): ‘Artificial cardiac pacemakers (review)’,Int. J. Clin. Pharmacol. Ther. Toxicol.,28, pp 177–189

    Google Scholar 

  • Foster, K. R., andSchwan, H. P. (1989): ‘Dielectric properties of tissues and biological materials: a critical review’,Crit. Rev. Biomed. Eng.,17, pp. 25–104

    Google Scholar 

  • Gabriel, S., Lau, R. W., andGabriel, C. (1996): ‘The dielectric properties of biological tissues: III Parametric models for the dielectric spectrum of tissues’,Phys. Med Biol.,41, pp. 2271–2293

    Google Scholar 

  • Hatle, L. (1986): ‘Introduction to Doppler echocardiography’,Acta Paediatr: Scand. Suppl. 329, pp. 7–9

    Google Scholar 

  • Hatle, L. (1987): ‘Noninvasive measurements of intracardiac blood flow velocities with Doppler ultrasound (review)’,Acta Med. Scand.,221, pp. 133–136.

    Google Scholar 

  • Hubbard, W. N., Fish, D. R., andMcBrien, D. J. (1986): ‘The use of impedance cardiography in heart failure’,Int. J. Cardiol.,12, pp. 71–79.

    Article  Google Scholar 

  • Karlöf, I. (1974): ‘Haemodynamic studies at rest and during exercise in patients treated with artificial pacemaker’,Acta Paediatr. Scand. Suppl.,565, pp. 1–24

    Google Scholar 

  • Karnegis, J. N., andKubicek, W. G. (1970): ‘Physiological correlates of the cardiac thoracic impedance waveform’,Am. Heart. J.,79, pp. 519–523

    Article  Google Scholar 

  • Karnegis, J. N., Heinz, J., andKubicek, W. G. (1981): ‘Mitral regurgitation and characteristic changes in impedance cardiogram’,Br. Heart J.,45, pp. 542–548

    Google Scholar 

  • Kauppinen, P. (1999): ‘Application of lead field theory in the analysis and development of impedance cardiography’. Ph.D. thesis,Tampere University of Technology, ISBN: 952-15-0297-5

  • Kelsey, R. M., andGuethlein, W. (1990): ‘An evaluation of the ensemble averaged impedance cardiogram’,Psychophysiology,27, pp. 24–33

    Google Scholar 

  • Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., andMattson, R. H. (1966): ‘Development and evaluation of an impedance cardiac output system’,Aerosp. Med.,37, pp. 1208–1212

    Google Scholar 

  • Kubicek, W. G., Kottke, J., Ramos, M. U., Patterson, R. P., Witsoe, D. A., Labree, J. W., Remole, W., Layman, T. E., Schoening, H., andGaramela, J. T. (1974): ‘The Minnesota impedance cardiograph-theory and applications’Biomed. Eng.,9, pp. 410–416

    Google Scholar 

  • Lababidi, Z., Ehmke, D. A., Durnin, R. E., Leaverton, P. E., andLauer, R. M. (1970): ‘The first derivative thoracic impedance cardiogram’,Circulation,41:4, pp. 651–658

    Google Scholar 

  • Lababidi, Z. (1978): ‘The O-point and diastolic impedance waveform’,Am. Heart J.,96, pp. 277–279

    Article  Google Scholar 

  • Lau, C. P. (1992): ‘The range of sensors and algorithms used in rate adaptive cardiac pacing (review)’,PACE,15, pp. 1177–1211

    Google Scholar 

  • Muzi, M., Ebert, T. J., Tristani, F. E., Jeutter, D. C., Barney, J. A., andSmith, J. J. (1985): ‘Determination of cardiac output using ensembleaveraged impedance cardiograms’,J. Appl. Physiol.,58, pp. 200–250

    Google Scholar 

  • Napholz, T., Lubin, M., andValenta, H. (1987): Metabolicdemand pacemaker and method of using the same to determine minute volume’. US Patent 4702253

  • Napholz, T., Hamilton, J., andHansen, J. (1990): ‘Minute volume rate-responsive pacemaker’. US Patent 4901725

  • Pickett, B. R., andBuell, J. C. (1993): ‘Usefulness of the impedance cardiogram to reflect left ventricular diastolic, function’,Am. J. Cardiol.,71, pp. 1099–1103

    Article  Google Scholar 

  • Prewitt, T., Gibson, D., Brown, D., andSutton, G. (1975): ‘The ‘rapid filling wave’ of the apex cardiogram. Its relation to echocardiographic and cineangiographic measurements of ventricular filling’,Br. Heart J.,37, pp. 1256–1262

    Google Scholar 

  • Ramos, M. U. (1977): ‘An abnormal early diastolic impedance waveform: a predictor of poor prognosis in the cardiac patient?’,Am. Heart. J.,94, pp. 274–281

    Google Scholar 

  • Rhoades, R., andTanner, G. (1995): ‘Medical physiology’ (Little Brown, 1995) ISBN 0-316-74228-7

  • Salo, R. W., Pederson, B. D., Olive, A. L., Lincoln, W. C., andWallner, T. G. (1984): ‘Continuous ventricular volume assessment for diagnosis and pacemaker control’,PACE,7, pp. 1267–1271

    Google Scholar 

  • Schaldach, M., Ebner, E., Hutten, H., Von Knorre, G. H., Niederlag, W., Rentsch, W., Volkmann, H., Weber, D., andWunderlich, E. (1992): ‘Right ventricular conductance to establish closed-loop pacing’,Eur. Heart J.,13, pp. 104–112

    Google Scholar 

  • Shoemaker, W. C., Wo, C. C., Bishop, M. H., Appel, P. L., Van De Water, J. M., Harrington, G. R., Wang, X., andPathl, R. S. (1994): ‘Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation’,Crit. Care. Med.,22, pp. 1907–1912

    Google Scholar 

  • Spinelli, J. (1994): ‘Continuous hemodynamic evaluation of the maximum sensor rate’,Eur. J. Cardiac Pacing Electrophysiol.,2, 202

    Google Scholar 

  • Stamato, T. M., Szwarc, R. S., andBenson, L. N. (1995): ‘Measurement of right ventricular volume by conductance catheter in closedchest pigs’,Am. J. Physiol.,29, pp. H869-H876

    Google Scholar 

  • Woltjer, H. H., Bogaard, H. J., Bronzwaer, J. G., De Cock, C. C., andDe Vries, P. M. (1997): ‘Prediction of pulmonary capillary wedge pressure and assessment of stroke volume by noninvasive impedance cardiography’,Am. Heart J., 134, pp 450–455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Järverud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Järverud, K., Ollmar, S. & Brodin, L.Å. Analysis of the O-wave in acute right ventricular apex impedance measurements with a standard pacing lead in animals. Med. Biol. Eng. Comput. 40, 512–519 (2002). https://doi.org/10.1007/BF02345448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345448

Keywords

Navigation