Skip to main content
Log in

Some aspects of the optical techniques for strain determination

Purpose of this paper is to show that a controlled determination of strain, separately from secondary variables, and a multiplication of effects are often connected with certain matching conditions and adequate optical properties

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In a general view, a comparison is made of different optical methods where either photoelastic models, opaque bodies with transparent coatings or noncontacted objects are examinèd with coherent light. Further, it is tried to show that some common features are contained by the three groups. These aspects concern the separation, by controlled determination, of displacement, rotation and strain (or of certain of their components), the multiplication of the optical effects in the detection and the elimination of secondary influences.

In particular, the noncontacting method of wavefront reconstruction with double-exposure holograms is discussed and the role of the localization condition for the fringes in space is analyzed. On the other hand, it is illustrated that, besides the generally known birefringence and diffraction. use could be made of nonorthodox effects like rotation of the plane of polarization, second-harmonic generation in nonlinear optics, etc. This may, for instance, contribute to the optical instrumentation when transparent models and bodies with photoelastic coatings are investigated under the above aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fourney, M. E., “Application of Holography to photoelasticity,”Experimental mechanics,8 (1),33–38 (1968).

    Article  Google Scholar 

  2. Hovanesian, J. D., Brcic, V. andPowell, R. L., “A New Experimental Stress-Optic Method: Stress-Holo-Interferometry,”Experimental mechanics,8 (8),362–368 (1968).

    Article  Google Scholar 

  3. Fourney, M. E. andMate, K. V., “Further Applications of Holography to Photoelasticity,”Experimental mechanics,10 (5),177–186 (1970).

    Article  Google Scholar 

  4. Clark, J. A. andDurelli, A. J., “A Simple Holographic Interferometer for Static and Dynamic Photomechanics,”Experimental mechanics,10 (12),497–505 (1970).

    Article  Google Scholar 

  5. Hovanesian, J. D., Eggenberger, G. andHung, Y. Y., “Fullfield Isopachic Generation in Photoelastic Coatings,”Experimental mechanics,12 (4),196–200 (1972).

    Article  Google Scholar 

  6. Horman, M. H., “An Application of Wavefront Reconstruction to Interferometry,”Appl. Opt.,4,333 (1965).

    Google Scholar 

  7. Powell, R. L. and Stetson, K. A., “Hologram Interferometry,” J. Opt. Soc. Am. 55, (1965).

  8. Ennos, A. E., “Measurement of In-plane Surface Strain by Hologram Interferometry,”J. of Sci. Instr. (J. of Ph.E.), Ser. 2,1,731–734 (1969).

    Google Scholar 

  9. Luxmoore, A. R. and House, C., “In-plane Strain Measurements by a Three Beam Holographic Methods,” Int. Symp. Appl. de l'holographie, 5.2, Besancon (1970).

  10. Leendertz, J. A., “Interferometric Displacement on Scattering Surface Utilizing Speckle Effect,”J. of Phys. E. Sc. Inst.,3,214–218 (1970).

    Google Scholar 

  11. Hung, Y. Y. andHovanesian, J. D., “Full-field Surface-strain and Displacement Analysis of Three-dimensional Objects by Speckle Interferometry,”Experimental mechanics,12 (10),454–460 (1972).

    Article  Google Scholar 

  12. Haines, K. A. andHildebrand, B. P., “Surface Deformation Measurement Using the Wavefront Reconstruction Technique,”Appl. Opt.,5 (4),595–602 (1966).

    Google Scholar 

  13. Alexandrov, E. B. andBonch-Bruevich, A. M., “Investigation of Surface Strains by the Hologram Technique,”Soviet Phys., Tech. Phys.,12 (2),258–265 (1967).

    Google Scholar 

  14. Stetson, K. A., “A Rigorous Treatment of the Fringes of Hologram Interferometry,”Optik,29,386–400 (1969).

    Google Scholar 

  15. Sollid, J. E., “Holographic Interferometry Applied to Measurements of Small Static Displacements of Diffusely Reflecting Surfaces,”Appl. Opt.,8 (8),1587–1595 (1969).

    Google Scholar 

  16. Sollid, J. E., “Translational Displacements versus Deformation Displacements in Double-exposure Holographic Interferometry,”Opt. Comm.,2 (6),282–288 (1970).

    Google Scholar 

  17. Stetson, K. A., “Effects of Beam Modulation on Fringe Loci and Localization in Time Average Hologram InterferometryJ. Opt. Soc.,60, (10),1378–1388 (1970).

    Google Scholar 

  18. Viénot, J. C., Froehly, C., Monneret, J. and Pasteur, J., “Hologram Interferometry: Surface Displacement Fringe Analysis as an Approach to the Study of Mechanical Strains,” Proc. of the Symposium, Glasgow, 133–150 (1970).

  19. Froehly, C., Monneret, J., Pasteur, J. andViénot, J. C., “Etude de faibles déplacements d'objets opaques et de la distorsion optique dans les lasers à solide par interférométrie holographique,”Optica Acta,16 (3),343–362 (1969).

    Google Scholar 

  20. Baldwin, G. C., An Introduction to Nonlinear Optics, Plenum Press, New York (1969).

    Google Scholar 

  21. Drucker, D. C. andMindlin, R. D., “Stress Analysis by Three-dimensional Photoelastic Methods,”J. Appl. Phys.,11,724–732 (1940).

    Article  Google Scholar 

  22. O'Regan, R. andDudderar, T. D., “A New Holographic Interferometer for Stress Analysis,”Experimental mechanics,11 (6),241–247 (1971).

    Article  Google Scholar 

  23. Chatelain, B., “Photoélasticité holographique, thèse,” Université de Besançon (1972).

  24. Holloway, D. C., Ranson, W. F. andTaylor, C. E., “A Neoteric Interferometer for Use in Holographic Photoelasticity,”Experimental mechanics,12, (10),461–465 (1972).

    Article  Google Scholar 

  25. Post, D., “Multiple Beam Fringe Sharpening with the Series Interferometer,”J. Opt. Soc. Am.,48 (5),309 (1958).

    Google Scholar 

  26. Fabry, C., “Sur une nouvelle méthode pour l'étude expérimenta'e des tensions élastiques,”Comptes rendus,190 (8),457–460 (1930).

    MATH  Google Scholar 

  27. Favre, H., “Etude théorique de l'influence des réflexions intérieures sur la marche d'un rayon lumineux traversant une lame transparente soumise à des forces agissant dans son plan moyen,”Ing. Archiv,28, (1),39–52 (1959).

    Article  MATH  Google Scholar 

  28. Favre, H., “Sur une nouvelle méthode optique de détermination des tensions intérieures,”Revue d'Optique,8,193–213,241–261, 289–307 (1929).

    Google Scholar 

  29. Nishida, M. andSaito, H., “A New Interferometric Method of Two-dimensional Stress Analysis,”Experimental mechanics,4 (12),366–376 (1964).

    Google Scholar 

  30. Post, D., “Photoelastic Evaluation of Individual Principal Stresses by Large Field Absolute Retardation Measurements,”Proc. SESA XIII (2),119–132 (1956).

    Google Scholar 

  31. Post, D., “Holography and Interferometry in Photoelasticity,”Experimental mechanics,12, (3),113–123 (1972).

    Article  Google Scholar 

  32. Sciammarella, C. A. andQuintanilla, G., “Techniques for the Determination of Absolute Retardation in Photoelasticity,”Experimental mechanics,12 (2),57–66 (1972).

    Google Scholar 

  33. Guild, J., The Interference Systems of Crossed Diffraction Gratings, Clarendon Press, Oxford (1956).

    Google Scholar 

  34. Theocaris, P. S., “Slope-contour Fringe Multiplication by Fresnel Diffraction,”Experimental mechanics,10 (9),377–383 (1970).

    Google Scholar 

  35. Bohler, P., “Méthode optique et photoélastique pour la détermination complète d'états de tension quelconques, statiques ou dynamiques, dans des modèles transparents ou à la surface de corps opaques tridimensionnels,” Thèse, Zurich (1971).

  36. Bohler, P., “Sur une application d'Optique nonlinéaire à l'élimination complète des erreurs causées par des variations d'incidence dans une mesure interférentielle par réflexion d'un rayon sur les faces d'une lame transparente,”Comptes rendus, 272, 735–738 (1971).

    Google Scholar 

  37. Walles, S., “Visibility and Localization of Fringes in Holographic Interferometry of Diffusely Reflecting Surfaces,”Arkiv för Fysik,40 (26),299–403 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumann, W. Some aspects of the optical techniques for strain determination. Experimental Mechanics 13, 225–231 (1973). https://doi.org/10.1007/BF02322618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02322618

Keywords

Navigation