Skip to main content
Log in

Experimental determination of stress intensity factors due to residual stresses

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

An experimental method is presented that enables stress intensity factors due to residual stress to be determined directly, without prior determination of the residual stress. The method is based on the crack compliance method, where a narrow cut is introduced progressively into the considered component, and the resulting strain change is measured by a strain gage. The required mathematical relations to determine stress intensity factors from strain measurements are established by means of some basic relations of linear elastic fracture mechanics. They are derived explicitly for two exemplary geometrical systems, which allowed for analytical treatment. Experimental data obtained in the case of a steel roller are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, W. andFinnie, I., “Measurement of Residual Hoop Stresses in Cylinders Using the Compliance Method,”ASME J. Eng. Mat. Tech.,108,87–92 (1986).

    Google Scholar 

  2. Cheng, W. and Finnie, I., “An Overview of the Crack Compliance Method for Residual Stress Measurement,” Proc. 4th Int. Conf. Residual Stress, Baltimore, MD, 449–458 (1994).

  3. Fett, T., “Bestimmung von Eigenspannungen mittels bruchmechanischer Beziehungen,”Materialprüfung,29 (4),92–94 (1987).

    Google Scholar 

  4. Kang, K.J., Song, J.H. andEarmme, Y.Y., “A Method for the Measurement of Residual Stress Using a Fracture Mechanics Approach,”J. Strain Analysis,24,23–30 (1989).

    Google Scholar 

  5. Timoshenko, S.P. andGoodier, N.P., Theory of Elasticity, 3rd ed., McGraw-Hill, New York (1970).

    Google Scholar 

  6. Irwin, G.R., “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,”J. Appl. Mech.,24,361–363 (1957).

    Google Scholar 

  7. Schindler, H.-J., “Experimentelle Bestimmung von Spannungsintensitätsfaktoren aus Eigenspannungen,” Proc. 27th Vortragsveranstaltung des DVM AK Bruchvorgänge, Deutscher Verband für Materialforschung und prüfung c.V., Köln, 421–430 (1995) (in German).

  8. Buckner, H., “A Novel Principle for Computation of Stress Intensity Factors,”Zeitschrift für angew, Mathematik und Mechanik (ZAMM),50,529 (1970).

    Google Scholar 

  9. Petrosky, H.J. andAchenbach, J.D., “Computation of the Weight Function from a Stress Intensity Factor,”Eng. Fract. Mech.,10,257–266 (1970).

    Google Scholar 

  10. Fett, T. andMunz, D., “Die Methode der Gewichtsfunktionen zur Berechnung von Spannungsintensitätsfaktoren,”Berichtsband der 23, Vortragsveranstaltung des DVM-AK Bruchvorgange, DVM, Berlin, 249–259 (1991) (in German).

    Google Scholar 

  11. Schindler, H.-J., “Weight Functions for Deep Cracks and High Stress Gradients,”Advances in Fracture Resistance and Structural Integrity, ed. V.V. Panasyuk et al., Pergamon, Oxford, 193–205 (1994).

    Google Scholar 

  12. Wu, X.R. andCarlsson, A.J., Weight Functions and Stress Intensity Factor Solutions, Pergamon, Oxford (1991).

    Google Scholar 

  13. Schindler, H.-J. andFinnie, I., “Determination of Residual Stresses and the Resulting Stress Intensity Factors in the Ligament of Pre-cracked Components,”Proc. 9th Int. Conf. Fract., Sydney, Advances in Fracture Research, ed. B.L. Karihaaloo et al., Pergamon, Amsterdam, Vol. 1, 523–530 (1997).

    Google Scholar 

  14. Schindler, H.-J. and Landolt, R., “Experimental Determination of Residual Stress and the Resulting Stress Intensity Factors in Rectangular Plates,” 4th European Conf. Residual Stresses (ECRS4), Cluny, France (1996) (to be published in Journal de Physique, colloques series).

  15. Gregory, R.D., “A Circular Disc Containing a Radial Edge Crack Opened by Constant Internal Pressure,”Mathematical Proceedings of the Cambridge Philosophical Society,81 497–521 (1977).

    MATH  MathSciNet  Google Scholar 

  16. Gregory, R.D., “The Spinning Circular Disc with a Radial Edge Crack: An Exact Solution,”Int. J. Fract.,41,39–50 (1989).

    Article  Google Scholar 

  17. Schindler, H.-J. andMorf, U., “Schadens- und Sicherheitsanalyse an betriebsgeschädigten Stahlrollen von Brückenlagern,”Report No. 517, Swiss Federal Office for Roads and Bridges, Bern (1995) (in German).

    Google Scholar 

  18. Schindler, H.-J. and Morf, U., “Load Bearing Capacity of Cracked Rollers Containing Residual Stress,s,” Proc. 10th European Fract., ed. K.H. Schwalbe and C. Berger, Vol. 2, EMAS, 767–774 (1994).

  19. Schindler, H.-J., “Determination of Residual Stress Distributions from Measured Stress Intensity Factors,”Int. J. Fract.,74,R23-R30 (1995).

    Google Scholar 

  20. Schindler, H.-J., Cheng, W. and Finnie, I., “Measurement of the Residual Stress Distribution in a Disk or Cylinder Using the Crack Compliance Method,” Proc. 4th Int. Conf. Residual Stress, Baltimore, MD, 1266–1274 (1994).

  21. Cheng, W., Finnie, I. andVardar, O., “Estimation of Axisymmetric Residual Stress in a Long Cylinder,”J. Eng. Mat. Tech.,114,137–140 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindler, H.J., Cheng, W. & Finnie, I. Experimental determination of stress intensity factors due to residual stresses. Experimental Mechanics 37, 272–277 (1997). https://doi.org/10.1007/BF02317418

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02317418

Keywords

Navigation