Skip to main content
Log in

Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a family of linearly elastic shells with thickness 2ɛ, clamped along their entire lateral face, all having the same middle surfaceS=φ(↔ω) ⊂R 3, whereωR 2 is a bounded and connected open set with a Lipschitz-continuous boundaryγ, andφl 3 (\(\overline \omega\);R 3). We make an essential geometrical assumption on the middle surfaceS, which is satisfied ifγ andφ are smooth enough andS is “uniformly elliptic”, in the sense that the two principal radii of curvature are either both>0 at all points ofS, or both<0 at all points ofS.

We show that, if the applied body force density isO(1) with respect toɛ, the fieldtu(ɛ)=(u i(ɛ)), whereu i (ɛ) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, one “scaled” so as to be defined over the fixed domain Ω=ω×]−1, 1[, converges inH 1(Ω)×H 1(Ω)×L 2(Ω) asɛ→0 to a limitu, which is independent of the transverse variable. Furthermore, the averageξ=1/2ε 1−1 u dx 3, which belongs to the space

$$V_M (\omega ) = H_0^1 (\omega ) \times H_0^1 (\omega ) \times L^2 (\omega ),$$

satisfies the (scaled) two-dimensional equations of a “membrane shell” viz.,

$$\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta )\gamma _{\alpha \beta } (\eta ) \sqrt \alpha dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\}\eta _i \sqrt a dy$$

for allη=(η i) εV M(ω), where\(a^{\alpha \beta \sigma \tau }\) are the components of the two-dimensional elasticity tensor of the surfaceS,

$$\gamma _{\alpha \beta } (\eta ) = \frac{1}{2}\left( {\partial _{\alpha \eta \beta } + \partial _{\beta \eta \alpha } } \right) - \Gamma _{\alpha \beta }^\sigma \eta _\sigma - b_{\alpha \beta \eta 3} $$

are the components of the linearized change of metric tensor ofS,\(\Gamma _{\alpha \beta }^\sigma\) are the Christoffel symbols ofS,\(b_{\alpha \beta }\) are the components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “membrane shell” are therefore justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acerbi, E., Buttazzo, G. &Percivale, D. [1988]: Thin inclusions in linear elasticity: a variational approach,J. reine angew. Math. 386, 99–115.

    MathSciNet  Google Scholar 

  • Acerbi, E., Buttazzo, G. &Percivale, D. [1991]: A variational definition of the strain energy for an elastic string,J. Elasticity 25, 137–148.

    MathSciNet  Google Scholar 

  • Aganović, I., Marušić-Paloka, E. &Tutek, Z. [1995]: Slightly wrinkled plate,Asymptotic Anal. 13, 1–29.

    Google Scholar 

  • Aganović, I. &Tutek, Z. [1986]: A justification of the one-dimensional model of an elastic beam,Math. Methods Applied Sci. 8, 1–14.

    Google Scholar 

  • Agmon, S., Douglis, A. &Nirenberg, L. [1964]: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II,Comm. Pure Appl. Math. 17, 35–92.

    MathSciNet  Google Scholar 

  • Amrouche, C. &Girault, V. [1994]: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,Czech. Math. J. 44, 109–140.

    MathSciNet  Google Scholar 

  • Antman, S. S. [1972] : The theory of rods, inHandbuch der Physik VIa/2 (C. Truesdell, editor), pp. 641–703, Springer-Verlag.

  • Antman, S. S. [1976]: Ordinary differential equations of one-dimensional nonlinear elasticity I: Foundations of the theories of nonlinearly elastic rods and shells,Arch. Rational Mech. Anal. 61, 307–351.

    MATH  MathSciNet  Google Scholar 

  • Antman, S. S. [1995] :Nonlinear Problems of Elasticity, Springer-Verlag.

  • Antman, S. S. ;Marlow, R. S. [1991]: Material constraints, Lagrange multipliers, and compatibility,Arch. Rational Mech. Anal. 116, 257–299.

    Article  MathSciNet  Google Scholar 

  • Anzellotti, G., Baldo, S. &Percivale, D. [1994]: Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity,Asymptotic Anal. 9, 61–100.

    MathSciNet  Google Scholar 

  • Arnold, D. N. &Brezzi, F. [1993]: Some new elements for the Reissner-Mindlin plate model, inBoundary Value Problems for Partial Differential Equations and Applications (J. L. Lions &C. Baiocchi, editors), pp. 287–292, Masson, Paris.

    Google Scholar 

  • Arnold, D. N. &Brezzi, F. [1995] : Locking free finite elements for shells,Math. Comp., to appear.

  • Babuška I. &Li, L. [1992]: The problem of plate modeling—Theoretical and computational results,Comp. Methods Appl. Mech. Engrg. 100, 249–273.

    Google Scholar 

  • Ball, J. M. [1977]: Convexity conditions and existence theorems in nonlinear elasticity,Arch. Rational Mech. Anal. 63, 337–403

    MATH  Google Scholar 

  • Bermudez, A. &Viaño, J. M. [1984]: Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques,RAIRO Analyse Numérique 18, 347–376.

    Google Scholar 

  • Bernadou, M. [1994]:Méthodes d'Eléments Finis pour les Coques Minces, Masson, Paris.

    Google Scholar 

  • Bernadou, M., Ciarlet, P. G. &Miara, B. [1994]: Existence theorems for two-dimensional linear shell theories,J. Elasticity 34, 111–138.

    MathSciNet  Google Scholar 

  • Blanchard, D &Francfort, G. A. [1987]: Asymptotic thermoelastic behavior of flat plates,Quart. Appl. Math. 45, 645–667.

    MathSciNet  Google Scholar 

  • Borchers, W. &Sohr, H. [1990]: On the equations rotv=g and divu=f with zero boundary conditions,Hokkaido Math. J. 19, 67–87.

    MathSciNet  Google Scholar 

  • Bourquin, F., Ciarlet, P. G., Geymonat, G. &Raoult, A. [1992]: Γ-convergence et analyse asymptotique des plaques minces,C. R. Acad. Sci. Sér. I,315, 1017–1024.

    MathSciNet  Google Scholar 

  • Brezzi F. [1994] : Personal communication.

  • Brezzi, F., Fortin, M. &Stenberg, R. [1991]: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates,Math. Models Methods Appl. Sci. 1, 125–151.

    Article  MathSciNet  Google Scholar 

  • Busse, S. [1996]:Doctoral Dissertation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Busse, S., Ciarlet, P. G. &Miara, B. [1996]: Coques “faiblement courbées” en coordonnées curvilignes,C.R. Acad. Sci. Paris, Ser. I 322, 1093–1098.

    MathSciNet  Google Scholar 

  • Caillerie, D. [1980]: The effect of a thin inclusion of high rigidity in an elastic body,Math. Methods Appl. Sci. 2, 251–270.

    MATH  MathSciNet  Google Scholar 

  • Caillerie, D. &Sanchez-Palencia, E. [1995]: Elastic thin shells : asymptotic theory in the anisotropic and heterogeneous cases,Math. Models Methods Appl. Sci.,5, 473–496.

    MathSciNet  Google Scholar 

  • Chenais, D. &Paumier, J. C. [1994]: On the locking phenomenon for a class of elliptic problems,Numer. Math. 67, 427–440.

    Article  MathSciNet  Google Scholar 

  • Chenais, D. &Zerner, M. [1993]: Conditions nécessaires pour éviter le verrouillage numérique. Applications aux arches,C. R. Acad. Sci. Paris, Sér. I,316, 1097–1102.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. [1980]: A justification of the von Kármán equations,Arch. Rational Mech. Anal. 73, 349–389.

    Article  MATH  MathSciNet  Google Scholar 

  • Ciarlet, P. G. [1988] :Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, North-Holland.

  • Ciarlet, P. G. [1990]:Plates and Junctions in Elastic Multi-Structures : An Asymptotic Analysis, Masson, Paris.

    Google Scholar 

  • Ciarlet, P. G. [1997a] :Mathematical Elasticity, Vol. II: Theory of Plates, North-Holland.

  • Ciarlet, P. G. [1997b]:Mathematical Elasticity, Vol. III: Theory of Shells, North-Holland.

  • Ciarlet, P. G. &Destuynder, P. [1979a]: A justification of the two-dimensional plate model,J. Mécanique 18, 315–344.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Destuynder, P. [1979b]: A justification of a nonlinear model in plate theory,Comp. Methods Appl. Mech. Engrg. 17/18, 227–258.

    Google Scholar 

  • Ciarlet, P. G. &Kesavan, S. [1981]: Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory,Comp. Methods Appl. Mech. Engrg. 26, 149–172.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. Le Dret, H. &Nzengwa, R. [1989]: Junctions between three-dimensional and two-dimensional linearly elastic structures,J. Math. Pures Appl.,68, 261–295.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1994a]: Ellipticité des équations membranaires d'une coque uniformément elliptique,C. R. Acad. Sci. Paris, Sér. I,318, 195–200.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1994b]: Analyse asymptotique des coques linéairement élastiques. I. Coques “membranaires”,C. R. Acad. Sci. Paris, Sér. I,318, 863–868.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1995a]: Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de Koiter,C. R. Acad. Sci. Paris, Sér. I,319, 299–304.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1995b]: Analyse asymptotique des coques linéairement élastiques. IV. Coques “membranaires sensitives”C. R. Acad. Sci. Paris, Sér. I,321, 649–654.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1996a]: On the ellipticity of linear membrane shell equations,J. Math. Pures Appl. 75, 107–124.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1996b]: Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations,Arch. Rational Mech. Anal. 136, 191–200.

    MathSciNet  ADS  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1996c]: Asymptotic analysis of linearly elastic shells: “Generalized membrane shells”J. Elasticity 43, 147–188.

    Article  MathSciNet  Google Scholar 

  • Ciarlet, P. G., Lods, V. &Miara, B. [1994[: Analyse asymptotique des coques linéairement élastiques. II. Coques “en flexion”,C.R. Acad. Sci. Paris, Sér. I,319, 95–100.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G., Lods, V. &Miara, B. [1996]: Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations,Arch. Rational Mech. Anal. 136, 163–190.

    MathSciNet  ADS  Google Scholar 

  • Ciarlet, P. G. &Miara, B. [1992]: Justification of the two-dimensional equations of a linearly elastic shallow shell,Comm. Pure Appl. Math. 45, 327–360.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Paumier, J. C. [1986]: A justification of the Marguerre-von Kármán equations,Computational Mechanics 1, 177–202.

    Article  Google Scholar 

  • Ciarlet, P. G. &Rabier, P. [1980]:Les Equations de von Kármán, Lecture Notes in Mathematics, Vol. 826, Springer-Verlag.

  • Ciarlet, P. G. &Sanchez-Palencia, E. [1993]: Un théorème d'existence et d'unicité pour les équations de coques membranaires,C. R. Acad. Sci. Paris, Sér. I,317, 801–805.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Sanchez-Palencia, E. [1996]: An existence and uniqueness theorem for the two-dimensional linear membrane shell equations,J. Math. Pures Appl. 75, 51–67.

    MathSciNet  Google Scholar 

  • Cimetière, A., Geymonat, G., Le Dret, H., Raoult, A &Tutek, Z. [1988]: Asymptotic theory and analysis for displacements and stress distribution in non-linear elastic straight slender rods,J. Elasticity 19, 111–161.

    Article  MathSciNet  Google Scholar 

  • Cioranescu, D. &Saint Jean Paulin, J. [1995]: Conductivity problems for thin tall structures depending on several small parameters,Advances Math. Sci. Appl. 5, 287–320.

    MathSciNet  Google Scholar 

  • Dauge, M. &Gruais, I. [1996]: Asymptotics of arbitrary order in thin elastic plates and optimal estimates for the Kirchhoff-Love model,Asymptotic Anal. 13, 167–197.

    MathSciNet  Google Scholar 

  • Dautray, R. &Lions, J. L. [1984]:Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson.

  • Davet, J. L. [1986]: Justification de modèles de plaques non linéaires pour des lois de comportement générales,Modélisation Math. Anal. Numér. 20, 225–249.

    MATH  MathSciNet  Google Scholar 

  • Destuynder, P. [1980]:Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Doctoral Dissertation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Destuynder, P. [1981]: Comparaison entre les modéles tri-dimensionnels et bi-dimensionnels de plaques en élasticité,RAIRO Analyse Numérique 15, 331–369.

    MATH  MathSciNet  Google Scholar 

  • Destuynder, P. [1985]: A classification of thin shell theories,Acta Applicandae Mathematicae 4, 15–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Destuynder, P. &Gruais, I. [1995]: Error estimation for the linear three-dimensional elastic plate model, inAsymptotic Methods for Elastic Structures (P. G. Ciarlet, L. Trabucho &J. M. Viaño, editors), pp. 75–88, de Gruyter.

  • Dikmen, M. [1982]:Theory of Thin Elastic Shells, Pitman.

  • Duvaut, G.; Lions, J.L. [1972]:Les Inéquations en Mécanique et en Physique, Dunod.

  • Eckhaus, W. [1979]:Asymptotic Analysis of Singular Perturbations, North-Holland.

  • Figueiredo, I. N. &Trabucho, L. [1992]: A Galerkin approximation for linear elastic shallow shells,Computational Mechanics 10, 107–119.

    Article  MathSciNet  Google Scholar 

  • Figueiredo, I. N. &Trabucho, L. [1993]: A Galerkin approximation for curved beams,Comp. Methods Appl. Mech. Engrg. 102, 235–253.

    MathSciNet  Google Scholar 

  • Fox, D. D., Raoult, A. &Simo, J. C. [1993]: A justification of nonlinear properly invariant plates theories,Arch. Rational Mech. Anal. 124, 157–199.

    Article  MathSciNet  Google Scholar 

  • Friedrichs, K. O. &Dressler, R. F. [1961]: A boundary-layer theory for elastic plates,Comm. Pure Appl. Math. 14, 1–33.

    MathSciNet  Google Scholar 

  • Genevey, K. [1995]: Un résultat de régularité pour un problème membranaire de coque linéairement élastique,C. R. Acad. Sci. Paris, Sér. I,320, 1153–1156.

    MATH  MathSciNet  Google Scholar 

  • Geymonat, G., Krasucki, F. &Marigo, J. J. [1987]: Stress distribution in anisotropic elastic composite beams, inApplications of Multiple Scalings in Mechanics (P. G. Ciarlet &E. Sanchez-Palencia, editors), pp. 118–133, Masson.

  • Geymonat, G. &Sanchez-Palencia, E. [1995]: On the rigidity of certain surfaces with folds and applications to shell theory,Arch. Rational Mech. Anal. 129, 11–45.

    MathSciNet  Google Scholar 

  • Goldenveizer, A. L. [1962]: Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Prikl. Mat. Mech.26, 668–686 (English translation:J. Appl. Math. Mech. [1964], 1000–1025.)

    MATH  MathSciNet  Google Scholar 

  • Goldenveizer, A. L. [1963]: Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity,Prikl. Mat. Mech. 27, 593–608.

    MATH  MathSciNet  Google Scholar 

  • Goldenveizer, A. L. [1964]: The principles of reducing three-dimensional problems of elasticity to two-dimensional problems of the theory of plates and shells, inProceedings of the Eleventh International Congress of Theoretical and Applied Mechanics (H. Görtler, editor), pp. 306–311, Springer-Verlag.

  • Green, A. E. &Zerna, W. [1968]:Theoretical Elasticity, Second Edition, Oxford University Press.

  • John, F. [1965]: Estimates for the derivatives of the stresses in a thin shell and interior shell equations,Comm. Pure Appl. Math. 18, 235–267.

    MathSciNet  Google Scholar 

  • John, F. [1971]: Refined interior equations for thin elastic shells,Comm. Pure Appl. Math. 24, 583–615.

    MATH  MathSciNet  Google Scholar 

  • Karwowski, A. [1990]: Asymptotic models for a long elastic cylinder,J. Elasticity 24, 229–287.

    Article  MATH  MathSciNet  Google Scholar 

  • Karwowski, A. [1993]: Dynamical models for plates and membranes. An asymptotic approach,J. Elasticity 32, 93–153.

    MATH  MathSciNet  Google Scholar 

  • Kohn, R. V. &Vogelius, M. [1984]: A new model for thin plates with rapidly varying thickness, I,Internat. J. Engrg. Sci. 20, 333–350.

    Google Scholar 

  • Kohn, R. V. &Vogelius, M. [1985]: A new model for thin plates with rapidly varying thickness, II. A convergence proof,Quart. Appl. Math. 43, 1–21.

    MathSciNet  Google Scholar 

  • Kohn, R. V. &Vogelius, M. [1986]: A new model for thin plates with rapidly varying thickness, III. Comparison of different scalings,Quart. Appl. Math. 44, 35–48.

    MathSciNet  Google Scholar 

  • Koiter, W. T. [1966]: On the nonlinear theory of thin elastic shells,Proc. Kon. Ned. Akad. Wetensch. B69, 1–54.

    MathSciNet  Google Scholar 

  • Koiter, W. T. [1970]: On the foundations of the linear theory of thin elastic shells,Proc. Kon. Ned. Akad. Wetensch. B73, 169–195.

    MathSciNet  Google Scholar 

  • Koiter, W. T. &Simmonds, J. C. [1973]: Foundations of shell theory, inApplied Mechanics, Proceedings of the Thirteenth International Congress of Theoretical and Applied Mechanics, Moscow, August 1972 (E. Becker &G. K. Mikhailov, editors), pp. 150–176, Springer-Verlag.

  • Le Dret, H. [1991]:Problèmes Variationnels dans les Multi-Domaines: Modélisation des Junctions et Applications, Masson, Paris.

    Google Scholar 

  • Le Dret, H. [1995]: Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero,Asymptotic Anal. 10, 367–402.

    MATH  MathSciNet  Google Scholar 

  • Le Dret, H. &Raoult, A. [1993]: Le modéle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire,C. R. Acad. Sci. Paris, Sér. I,317, 221–226.

    Google Scholar 

  • Le Dret, H. &Raoult, A. [1995a]: From three-dimensional elasticity to nonlinear membranes, inAsymptotic Methods for Elastic Structures (P. G. Ciarlet, L. Trabucho &J. M. Viaño, editors), pp. 89–102, de Gruyter.

  • Le Dret, H. &Raoult, A. [1995b]: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity,J. Math. Pures Appl. 74, 549–578.

    MathSciNet  Google Scholar 

  • Le Dret, H. Raoult, A. [1995c]: Dérivation variationnelle du modèle non linéaire de coque membranaire,C. R. Acad. Sci. Paris, Sér. I,320, 511–516.

    Google Scholar 

  • Le Dret, H. &Raoult, A. [1996]: The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,J. Nonlinear Sci. 6, 59–84.

    MathSciNet  Google Scholar 

  • Lions, J. L. [1973]:Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lectures Notes in Mathematics, Vol. 323, Springer-Verlag.

  • Lions, J. L.;Sanchez-Palencia, E. [1994]: Problèmes aux limites sensitifs,C. R. Acad. Sci. Paris, Sér. I,319, 1021–1026.

    MathSciNet  Google Scholar 

  • Lions, J. L.; Sanchez-Palencia, E. [1996]: Problèmes sensitifs et coques élastiques minces. InPartial Differential Equations and Functional Analysis — in Memory of Pierre Grisvard (J. Céa, D. Chenais, G. Geymonat &J.-L. Lions, editors), pp. 207–220, Birkhäuser.

  • Lods, V. &Miara, B. [1995]: Analyse asymptotique des coques “en flexion” non linéairement élastiques,C. R. Acad. Sci. Paris, Sér. I,321, 1097–1102.

    MathSciNet  Google Scholar 

  • Magenes, E. &Stampacchia, G. [1958]: I problemi al contorno per le equazioni differenziali di tipo ellitico,Ann. Scuola Norm. Sup. Pisa 12, 247–358.

    MathSciNet  Google Scholar 

  • Mardare, C. [1996]:Doctoral Dissertation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Mascarenhas, M. L.; Trabucho, L. [1992]: Asymptotic, homogenisation and Galerking methods in three-dimensional beam theory, inComputational and Applied Mathematics II (W. F. Ames & P. J. van derHouwen, editors), pp. 85–91, North-Holland.

  • Miara, B. [1989]: Optimal spectral approximation in linearized plate theory,Applicable Anal. 31, 291–307.

    MATH  MathSciNet  Google Scholar 

  • Miara, B. [1994a]: Justification of the asymptotic analysis of elastic plates. I: The linear case,Asymptotic Anal. 8, 259–276.

    MathSciNet  ADS  Google Scholar 

  • Miara, B. [1994b]: Justification of the asymptotic analysis of elastic plates. II: The nonlinear case,Asymptotic Anal. 9, 119–134.

    MATH  MathSciNet  Google Scholar 

  • Miara, B. [1994c]: Analyse asymptotique des coques membranaires non linéairement élastiques,C. R. Acad. Sci. Paris, Sér. I,318, 689–694.

    MATH  MathSciNet  Google Scholar 

  • Miara, B. [1995]: Asymptotic analysis of nonlinearly elastic membrane shells, inAsymptotic Methods for Elastic Structures (P. G. Ciarlet, L. Trabucho &J. M. Viaño, editors) pp. 151–159, de Gruyter.

  • Miara, B. &Sanchez-Palencia, E. [1996]: Asymptotic analysis of linearly elastic shells,Asymptotic Anal. 12, 41–54.

    MathSciNet  Google Scholar 

  • Miara, B. &Trabucho, L [1992]: A Galerkin spectral approximation in linearized beam theory,Modélisation Math. Anal. Numér. 26, 425–446.

    MathSciNet  Google Scholar 

  • Mielke, A. [1988]: Saint Venant's problem and semi-inverse solutions in nonlinear elasticity,Arch. Rational Mech. Anal. 102, 205–229; Corrigendum,ibid. 110 [1990], 351–352.

    MATH  MathSciNet  Google Scholar 

  • Mielke, A. [1990]: Normal hyperbolicity of center manifolds and Saint Venant's principle,Arch. Rational Mech. Anal. 110, 353–372.

    MATH  MathSciNet  Google Scholar 

  • Mielke, A. [1995]: On the justification of plate theories in linear elasticity theory using exponential decay estimates,J. Elasticity 38, 165–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Morgenstern, D. [1959]: Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie,Arch. Rational Mech. Anal. 4, 145–152.

    MATH  MathSciNet  Google Scholar 

  • Morgenstern, D. &Szabó, I. [1961]:Vorlesungen über Theoretische Mechanik, Springer-Verlag.

  • Naghdi, P. M. [1972]: The theory of shells and plates, inHandbuch der Physik, Vol. VIa/2 (S. Flügge &C. Truesdell, editors), pp 425–640, Springer-Verlag.

  • Nečas, J. [1967]:Les Méthodes Directes en Théorie des Equations Elliptiques, Masson.

  • Niordson, F. I. [1985]:Shell Theory, North-Holland.

  • Nordgren, R. P. [1971]: A bound on the error in plate theory,Quart. Appl. Math. 28, 587–595.

    MATH  MathSciNet  Google Scholar 

  • Paumier, J. C. [1991]: Existence and convergence of the expansion in the asymptotic theory of elastic thin plates,Math. Modelling Numer. Anal. 25, 371–391.

    MATH  MathSciNet  Google Scholar 

  • Paumier, J. C. [1995]: On the locking phenomenon for a linearly elastic three-dimensional clamped plate, to appear.

  • Pitkäranta, J. [1992]: The problem of membrane locking in finite element analysis of cylindrical shells,Numer. Math. 61, 523–542.

    Article  MATH  MathSciNet  Google Scholar 

  • Podio-Guidugli, P. [1989]: An exact derivation of the thin plate equation,J. Elasticity 22, 121–133.

    MATH  MathSciNet  Google Scholar 

  • Podio-Guidugli, P. [1990]: Constraint and scaling methods to derive shell theory from three-dimensional elasticity,Riv. Mat. Univ. Parma 16, 73–83.

    MATH  MathSciNet  Google Scholar 

  • Quintela-Estevez, P. [1989]: A new model for nonlinear elastic plates with rapidly varying thickness,Applicable Anal. 32, 107–127.

    MATH  MathSciNet  Google Scholar 

  • Ramos, O. [1995]:Doctoral Dissertation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Rao, Bopeng [1994]: A justification of a nonlinear model of spherical shell,Asymptotic Anal. 9, 47–60.

    MathSciNet  Google Scholar 

  • Raoult, A. [1985]: Construction d'un modèle d'évolution de plaques avec termes d'inertie de rotation,Annali di Matematica Pura ed Applicata 139, 361–400.

    Article  MATH  MathSciNet  Google Scholar 

  • Raoult, A. [1988]:Analyse Mathématique de Quelques Modèles de Plaques et de Poutres Elastiques ou Elasto-Plastiques, Doctoral Dissertation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Rigolot, A. [1972]: Sur une théorie asymptotique des poutres,J. Mécanique 11, 673–703.

    MathSciNet  Google Scholar 

  • Rigolot, A. [1976]:Sur une Théorie Asymptotique des Poutres Droites, Doctoral Dissertation, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  • Sanchez-Palencia, E. [1989a]: Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée,C. R. Acad. Sci. Paris, Sér. I,309, 411–417.

    MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1989b]: Statique et dynamique des coques minces. II. Cas de flexion pure inhibée — Approximation membranaire,C. R. Acad. Sci. Paris, Sér. I,309, 531–537.

    MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1990]: Passages à la limite de l'élasticité tri-dimensionnelle à la théorie asymptotique des coques minces,C. R. Acad. Sci. Paris, Sér. II,311, 909–916.

    MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1992]: Asymptotic and spectral properties of a class of singular-stiff problems,J. Math. Pures Appl. 71, 379–406.

    MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1993]: On the membrane approximation for thin elastic shells in the hyperbolic case,Revista Matematica de la Universidad Complutense de Madrid 6, 311–331.

    MATH  MathSciNet  Google Scholar 

  • Schwab, C. [1996]: A-posteriori modeling error estimation for hierarchic plate models,Numer. Math. 74, 221–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Shoikhet, B. A. [1976]: An energy identity in physically nonlinear elasticity and error estimates of the plate equations,Prikl. Mat. Mech. 40, 317–326.

    Google Scholar 

  • Simmonds, J. G. [1971a]: An improved estimate for the error in the classical linear theory of plate bending,Quart. Appl. Math. 29, 439–447.

    MATH  Google Scholar 

  • Simmonds, J. G. [1971b]: Extension of Koiter'sL 2-error estimate to approximate shell solutions with no strain energy functional,Z. angew. Math. Phys. 22, 339–345.

    MATH  MathSciNet  Google Scholar 

  • Şlicaru, S. [1996]: Sur l'ellipticité de la surface moyenne d'une coque,C.R. Acad. Sci. Paris, Sér. I,322, 97–100.

    Google Scholar 

  • Trabucho, L. &Viaño, J. M. [1987]: Derivation of generalized models for linear elastic beams by asymptotic expansion methods, inApplications of Multiple Scalings in Mechanics (P. G. Ciarlet &E. Sanchez-Palencia, editors), pp. 302–315, Masson.

  • Trabucho, L. &Viaño, J. M. [1996]: Mathematical modelling of rods, inHandbook of Numerical Analysis, Vol. IV (P. G. Ciarlet &J. L. Lions, editors), pp. 487–974, North-Holland, to appear.

  • Truesdell, C. [1977]: Comments on rational continuum mechanics, inContemporary Developments in Continuum Mechanics and Partial Differential Equations (G. M. De la Penha &L. A. Medeiros, editors), pp. 495–603, North-Holland.

  • Valent, T. [1988]:Boundary Value Problems of Finite Elasticity, Springer-Verlag.

  • Veiga, M. F. [1995]: Asymptotic method applied to a beam with a variable cross section, inAsymptotic Methods for Elastic Structures (P. G. Ciarlet, L. Trabucho &J. M. Viaño, editors), pp. 237–254, de Gruyter.

  • Zerner, M. [1994]: An asymptotically optimal finite element scheme for the arch problem,Numer. Math. 69, 117–123.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by the Editor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarlet, P.G., Lods, V. Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Rational Mech. Anal. 136, 119–161 (1996). https://doi.org/10.1007/BF02316975

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02316975

Keywords

Navigation