Skip to main content
Log in

Generalized structured component analysis

  • Theory And Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

We propose an alternative method to partial least squares for path analysis with components, called generalized structured component analysis. The proposed method replaces factors by exact linear combinations of observed variables. It employs a well-defined least squares criterion to estimate model parameters. As a result, the proposed method avoids the principal limitation of partial least squares (i.e., the lack of a global optimization procedure) while fully retaining all the advantages of partial least squares (e.g., less restricted distributional assumptions and no improper solutions). The method is also versatile enough to capture complex relationships among variables, including higher-order components and multi-group comparisons. A straightforward estimation algorithm is developed to minimize the criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, N. J., & Meyer, J. P. (1990). The measurement and antecedents of affective, continuance and normative commitment to the organization.Journal of Occupational Psychology, 63, 1–18.

    Google Scholar 

  • Beaton, A. E., & Tukey, J. W. (1974). The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data.Technometrics, 16, 147–185.

    Google Scholar 

  • Bergami, M., & Bagozzi, R. P. (2000). Self-categorization, affective commitment and group self-esteem as distinct aspects of social identity in the organization.British Journal of Social Psychology, 39, 555–577.

    Google Scholar 

  • Bock, R. D., & Bargmann, R. E. (1966). Analysis of covariance structures.Psychometrika, 31, 507–534.

    Google Scholar 

  • Böckenholt, U., & Takane, Y. (1994). Linear constraints in correspondence analysis. In M. J. Greenacre & J. Blasius (Eds.),Correspondence Analysis in Social Sciences (pp. 112–127). London: Academic Press.

    Google Scholar 

  • Bollen, K. A. (1989).Structural Equations with Latent Variables. New York: John Wiley and Sons.

    Google Scholar 

  • Bookstein, F.L. (1982). Soft modeling: The basic design and some extensions. In K. G. Jöreskog and H. Wold (Eds.),Systems under Indirect Observations II (pp. 55–74). Amsterdam: North-Holland.

    Google Scholar 

  • Browne, M. W., & Cudeck, R. (1993). Alternative ways to assessing model fit. In K. A. Bollen & J. S. Long (Eds.),Testing Structural Equation Models (pp. 136–162). Newbury Park, CA: Sage Publications.

    Google Scholar 

  • Chin, W. W. (2001).PLS-Graph User's Guide Version 3.0. Soft Modeling Inc.

  • Coolen, H., & de Leeuw, J. (1987). Least squares path analysis with optimal scaling, Paper presented at the Fifth International Symposium of Data Analysis and Informatics. Versailles, France.

  • de Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features.Psychometrika, 41, 471–503.

    Google Scholar 

  • Efron, B. (1982).The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: SIAM.

    Google Scholar 

  • Efron, B. (1994). Missing data, imputation, and the bootstrap.Journal of the American Statistical Association, 89, 463–475.

    Google Scholar 

  • Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory.Journal of Marketing Research, 19, 440–452.

    Google Scholar 

  • Fornell, C., & Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.),Advanced Methods of Marketing Research (pp. 52–78). Oxford: Blackwell.

    Google Scholar 

  • Gabriel, K. R., & Zamir, S. (1979). Low rank approximation of matrices by least squares with any choice of weights.Technometrics, 21, 489–498.

    Google Scholar 

  • Griep, M. I., Wakeling, I. N., Vankeerberghen, P., & Massart, D. L. (1995). Comparison of semirobust and robust partial least squares procedures.Chemometrics and Intelligent Laboratory Systems, 29, 37–50.

    Google Scholar 

  • Hanafi, M., & Qannari, E. M. (2002). An alternative algorithm to the PLS B problem. Paper submitted for publication.

  • Hwang, H., & Takane, Y. (2002). Structural equation modeling by extended redundancy analysis. In S. Nishisato, Y. Baba, H. Bozdogan, and K. Kanefuji (Eds.),Measurement and Multivariate Analysis (pp. 115–124). Tokyo: Springer Verlag.

    Google Scholar 

  • Jöreskog, K. G. (1970). A general method for analysis of covariance structures.Biometrika, 57, 409–426.

    Google Scholar 

  • Kiers, H. A. L., Takane, Y., & ten Berge, J. M. F. (1996). The analysis of multitrait-multimethod matrices via constrained components analysis.Psychometrika, 61, 601–628.

    Google Scholar 

  • Lyttkens, E. (1968). On the fixed-point property of Wold's iterative estimation method for principal components. In P. R. Krishnaiah (Ed.),Multivariate Analysis (pp. 335–350). New York: Academic Press.

    Google Scholar 

  • Lyttkens, E. (1973). The fixed-point method for estimating interdependent systems with the underlying model specification.Journal of the Royal Statistical Society, A 136, 353–394.

    Google Scholar 

  • Mael, F. A. (1988).Organizational Identification: Construct Redefinition and a Field Application with Organizational Alumni. Unpublished doctoral dissertation, Wayne State University.

  • McDonald, R. P. (1996). Path analysis with composite variables.Multivariate Behavioral Research, 31, 239–270.

    Google Scholar 

  • Meredith, W., & Millsap, R. E. (1985). On component analysis.Psychometrika, 50, 495–507.

    Google Scholar 

  • Micceri, T. (1989). The unicorn, the normal curve, and other improvable creatures.Psychological Bulletin, 105, 156–166.

    Google Scholar 

  • Mulaik, S. A. (1972).The Foundations of Factor Analysis. New York: McGraw-Hill.

    Google Scholar 

  • Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte Carlo experiments: Design and implementation.Structural Equation Modeling, 8, 287–312.

    Google Scholar 

  • Schönemann, P. H., & Steiger, J. H. (1976). Regression component analysis.British Journal of Mathematical and Statistical Psychology, 29, 175–189.

    Google Scholar 

  • Schafer, J. L. (1997).Analysis of Incomplete Multivariate Data. New York: Chapman & Hall/CRC.

    Google Scholar 

  • Seber, G. A. F. (1984).Multivariate Observations. New York: John Wiley and Sons.

    Google Scholar 

  • Takane, Y., Kiers, H., & de Leeuw, J. (1995). Component analysis with different sets of constraints on different dimensions.Psychometrika, 60, 259–280.

    Google Scholar 

  • Takane, Y., Yanai, H., & Mayekawa, S. (1991). Relationships among several methods of linearly constrained correspondence analysis.Psychometrika, 56, 667–684.

    Google Scholar 

  • ten Berge, J. M. F. (1993).Least Squares Optimization in Multivariate Analysis. Leiden: DSWO Press.

    Google Scholar 

  • Tucker, L. R. (1951). A method for synthesis of factor analysis studies (Personnel Research section Report No. 984). Washington, DC: U.S. Department of the Army.

    Google Scholar 

  • Wold, H. (1965). A fixed-point theorem with econometric background, I–II.Arkiv for Matematik, 6, 209–240.

    Google Scholar 

  • Wold, H. (1966). Estimation of principal components and related methods by iterative least squares. In P. R. Krishnaiah (Ed.),Multivariate Analysis (pp. 391–420). New York: Academic Press.

    Google Scholar 

  • Wold, H. (1973). Nonlinear iterative partial least squares (NIPALS) modeling: Some current developments. In P. R. Krishnaiah (Ed.),Multivariate Analysis (pp. 383–487). New York: Academic Press.

    Google Scholar 

  • Wold, H. (1981).The Fixed Point Approach to Interdependent Systems. Amsterdam: North Holland.

    Google Scholar 

  • Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. G. Jöreskog and H. Wold (Eds.),Systems under Indirect Observations II (pp. 1–54). Amsterdam: North-Holland.

    Google Scholar 

  • Young, F. W. (1981). Quantitative analysis of qualitative data.Psychometrika, 46, 357–388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heungsun Hwang.

Additional information

The work reported in this paper was supported by Grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the second author. We wish to thank Richard Bagozzi for permitting us to use his organizational identification data and Wynne Chin for providing PLS-Graph 3.0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H., Takane, Y. Generalized structured component analysis. Psychometrika 69, 81–99 (2004). https://doi.org/10.1007/BF02295841

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295841

Key words

Navigation