Skip to main content
Log in

Pyrolysis mass spectrometry of intact and decomposed leaves ofNuphar variegatum andZostera marina, and some archeological eelgrass samples

  • Published:
Hydrobiological Bulletin Aims and scope Submit manuscript

Abstract

The chemical composition of leaves and particulate decomposition residues of the water-lilyNuphar variegatum and the eelgrassZostera marina was studied by Curie-point pyrolysis mass spectrometry. The native water-lily and eelgrass were characterised by pyrolysis products of carbohydrates, proteins and several phenolic components. Prolonged decomposition of the waterlily under aerobic and anaerobic conditions resulted in residues with decreased carbohydrate content and an increased content of proteins, N-acetyl aminosugars and lignins. The proteins and N-acetyl aminosugars must be of microbial origin. This process is less pronounced in eelgrass. The composition of native eelgrass, laboratory decomposition residues, ancient dyke samples and old dry eelgrass used as insulation was evaluated using discriminant analysis of the pyrolysis mass spectra. Prolonged aerobic exposure leads to modifications of the polysaccharide structure. Anaerobic exposure leads to an organic matter rich in aromatic and furan residues whereas the incorporation of sulphur is clearly demonstrated. The eelgrass from the ancient dyke was found to be anaerobically digested. Exposure of this eelgrass dyke to atmospheric conditions due to excavation leads to a composition comparable to aerobically digested eelgrass obtained under laboratory conditions. The documented difference in degradability ofZostera marina andNuphar variegatum is thought to be caused by qualitative and quantitative differences in the phenolic components of both plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BOON, J. J., W. R. DE BOER, F.J. KRUYSSEN and J. T. M. WOUTERS, 1981a. Pyrolysis mass spectrometry of whole cells, cell walls and isolated cell wall polymers ofBacillus subtilis var.niger WM. J. Gen. Microbiol., 122: 119–127.

    Google Scholar 

  • BOON, J. J., R. G. WETZEL and G. L. GODSHALK, 1982. Pyrolysis mass spectrometry of someScirpus species and their decomposition products. Limnol. Oceanogr. (in press).

  • BOON, J. J., W. WINDIG, R. G. WETZEL and G. L. GODSHALK. Analysis of particulate organic matter fromMyriophyllum heterophyllum by pyrolysis mass spectrometry. Aquat. Bot. (in press).

  • BREMER, J. T., 1972. Het Wieringer wier., Waddenbulletin, 1972: 283–288.

    Google Scholar 

  • CAMPBELL, C. A., 1978. Soil organic carbon, nitrogen and fertility. In: Soil organic matter, Eds., M. Schnitzer and S. V. Khan, Elsevier, Amsterdam, p. 173–265.

    Google Scholar 

  • GODSHALK, G. L., 1977. Decomposition of aquatic plants in lakes. Ph.D. Thesis Michigan State University, p. 139.

  • GODSHALK, G. L. and R. G. WETZEL, 1978a. Decomposition in the littoral zone of lakes. In: Fresh water wetlands: production processes and managements potential, Eds., R. E. Good, D. F. Whigham and R. L. Simpson, Academic Press, New York, p. 131–143.

    Google Scholar 

  • GODSHALK, G. L. and R. G. WETZEL, 1978b. Decomposition of aquatic angiosperms. I. Dissolved components. Aquat. Bot. 5: 281–300.

    Google Scholar 

  • GODSHALK, G. L. and R. G. WETZEL, 1978c. Decomposition of aquatic angiosperms, II. Particulate components. Aquat. Bot. 5: 301–327.

    Google Scholar 

  • GODSHALK, G. L. and R. G. WETZEL, 1978d. Decomposition of aquatic angiosperms. III.Zostera marina L. and a conceptual model of decomposition. Aquat. Bot., 5: 329–354.

    Google Scholar 

  • HAIDER, R., B. R. NAGAR, C. SAIZ-JIMENEZ, H. L. C. MEUZELAAR and J. P. MARTIN, 1977. Studies on soil humic compounds fungal melanins and model polymers by pyrolysis mass spectrometry. In: Soil organic matter studies II. I. A. E. A. SM 211/53, Vienna, p. 213–220.

    Google Scholar 

  • HARBORNE, J. B. and C. A. WILLIAMS, 1976. Occurrence of sulphated flavones and caffeic acid esters in members of the fluviales. Biochem. Systematics Ecol., 4: 37–41.

    Google Scholar 

  • HARRIS, P. J. and R. D. HARTLEY, 1980. Phenolic constituents of the cell walls of monocotyledons. Biochem. Systematics Ecol., 8: 153–160.

    Google Scholar 

  • HARRISON, P. G., 1982. Control of microbial growth on eelgrass by leaf-derived metabolites. Hydrobiol. Bull. (Amsterdam), 16:. ... (abstract).

  • HARRISON, P. G. and A. T. CHAN, 1980. Inhibition of the growth of microalgae and bacteria by extracts of eelgrass (Zostera marina) leaves. Marine Biology, 61: 21–26.

    Google Scholar 

  • HARRISON, P. G. and K. H. MANN, 1975. Chemical changes during the seasonal cycle of growth and decay in eelgrass (Zostera marina) on the Atlantic Coast of Canada. J. Fish Res. Board Can., 32: 615–621.

    Google Scholar 

  • HARTLEY, R. D. and E. C. JONES, 1980. Phenolic components and degradability of cell walls and legume species. Phytochemistry 16: 1531–1534.

    Google Scholar 

  • HAVERKAMP, J., H. L. C. MEUZELAAR, E. C. BEUVERY, P. BOONEKAMP and R. H. TIESJEMA, 1980. Characterization ofNeisseria meningitidis capsular polysaccharides containing sialic acid by pyrolysis mass spectrometry. Anal. Biochem., 104: 407–418.

    Google Scholar 

  • IRWIN, W. J., 1979. Analytical pyrolysis- an overview. J. Anal. Appl. Pyrol., 1: 3–25; 89–122.

    Google Scholar 

  • KANG, J. C., R. A. KORNFELD, R. H. NEWMAN and W. R. JOHNSON, 1980. Copyrolysis of carbohydrates and sulphur compounds 1. Formation of thioacetic acid and its decomposition of carbonyl sulphide. J. Agric Food Chem., 28: 992–997.

    Google Scholar 

  • LOUTER, G. J., P. F. M. STALMEIER, A. J. H. BOERBOOM, J. HAVERKAMP and J. KISTEMAKER, 1980. High sensitivity in CID mass spectrometry; structure analysis of pyrolysis fragments. Z. Naturforsch, 35C: 6–11.

    Google Scholar 

  • MARTIN, F., C. SAIZ-JIMENEZ and A. CERT, 1979. Pyrolysis-gas chromatography-mass spectrometry of soil humic fractions II. The high boiling point compounds. Soil Sci. Soc. Am. J., 43: 309–312.

    Google Scholar 

  • McMILLAN, C., O. ZAPATA and L. EESCOBAR, 1980. Sulphated phenolic compounds in sea grasses. Aquat. Bot., 8: 267–278.

    Google Scholar 

  • McROY, C. P. and C. HELFFERICH, 1980. Applied aspects of sea grass. In: Handbook of sea grass biology, Eds., R. C. Phillips and C. P. McRoy., Garland STPM Press, New York, p. 297–343.

    Google Scholar 

  • MEDLEY, E. E., P. G. SIMMONDS and S. L. MANATT, 1975. A pyrolysis gas chromatography mass spectrometry study of the ActinomyceteStreptomyces longiflavus. Biomed. Mass Spectrom., 2: 261–265.

    Google Scholar 

  • MEUZELAAR, H. L. C., M. A. POSTHUMUS, P. G. KISTEMAKER and J. KISTEMAKER, 1973. Curie point pyrolysis in direct combination with low voltage electron impact ionization mass spectrometry. Anal. Chem., 45: 1546–1549.

    Google Scholar 

  • MEUZELAAR, H. L. C., P. G. KISTEMAKER, W. ESHUIS and A. J. H. BOERBOOM, 1977. Automated pyrolysis mass spectrometry; application to the differentiation of micro-organisms. In: Advances in mass spectrometry, 7B, Ed. N. R. Daly, Heyden, London, p. 1452–1456.

    Google Scholar 

  • ODUM, W. E., P. W. KIRK and J. C. ZIEMANN, 1979. Non-protein nitrogen compounds associated with particles of vascular plant detritus. Oikos, 32: 363–367.

    Google Scholar 

  • SAIZ-JIMENEZ, C., K. HAIDER and H. L. C. MEUZELAAR, 1979. Comparison of soil organic matter and its fractions by pyrolysis mass spectrometry. Geoderma, 22: 25–37.

    Google Scholar 

  • SCHULTEN, H. R., H. D. BECKEY, H. L. C. MEUZELAAR and A. J. H. BOERBOOM, 1973. High resolution field ionization mass spectrometry of bacterial pyrolysis products. Anal. Chem. 45: 191–195

    Google Scholar 

  • SCHULTEN, H. R. and W. GÖRTZ, 1978. Curie point pyrolysis and field ionization mass spectrometry of polysaccharides. Anal. Chem., 50: 428–433.

    Google Scholar 

  • SHAFIZADEH, F. and Y. F. LAI, 1972. Thermal degradation of 1,6-anhydro-β-D-glucopyranose. J. Org. Chem., 37: 278–284.

    Google Scholar 

  • SIMMONDS, P. G., 1970. Whole micro-organisms studied by pyrolysis-gas chromatography-mass spectrometry: Significance for extraterrestrial life detection experiments. Appl. Microbiol. 20: 567–572.

    Google Scholar 

  • VAN DE MEENT, D., J. W. DE LEEUW and P. A. SCHENCK, 1980. Chemical characterization of non-volatile organics in suspended matter and sediments of the river Rhine delta. J. Anal. Appl. Pyrol., 2: 249–263.

    Google Scholar 

  • VAN DER VLIS, J. A., 1975. 'tLant van Texsel. Uitgeverij bv/vh Langeveld & de Rooy, Den Burg, Texel.

    Google Scholar 

  • WEYDT, L. J. 1980. Oude en nieuwe dijken. In: Texel en de zee, een strijd van eeuwen, Ed. J. C. Duinker, Texelse Museum Vereniging, p. 73–99.

  • WEIJMAN, A. C. M., 1977. The application of Curie point pyrolysis mass spectrometry in fungal taxonomy. In: Analytical Pyrolysis, Eds., C. E. R. Jones and C. A. Cramers, Elsevier, Amsterdam, p. 225–233.

    Google Scholar 

  • WINDIG, W., J. HAVERKAMP and P. G. KISTEMAKER, 1982. Chemical interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation. Anal. Chem. submitted.

  • ZAPATA, O., and C. McMILLAN, 1979. Phenolic acids in seagrasses. Aquat. Bot., 7: 307–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

dedicated to Prof. Dr. J. Kistermaker, on the occasion of his 65 th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boon, J.J., Haverkamp, J. Pyrolysis mass spectrometry of intact and decomposed leaves ofNuphar variegatum andZostera marina, and some archeological eelgrass samples. Hydrobiological Bulletin 16, 71–82 (1982). https://doi.org/10.1007/BF02255415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255415

Keywords

Navigation