Skip to main content
Log in

Changes in GABA content and turnover in discrete regions of rat brain after systemic administration of caerulein

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The effects of systemically injected caerulein, a cholecystokinin octapeptide analogue, on GABA content and turnover have been studied in various regions of rat brain. Caerulein decreased GABA levels in the nucleus accumbens, tuberculum olfactorium and substantia nigra and diminished GABA turnover rates in the striatum, nucleus accumbens and substantia nigra, as estimated from the rate of GABA accumulation after inhibition of GABA transaminase by aminooxyacetic acid (AOAA). These results indicate the effect of caerulein on the utilization of GABA in specific cerebral regions and suggest that the GABAergic system is involved in the mechanism of action of peripherally administered caerulein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cheramy A, Nieoullon A, Glowinsky J (1978) GABAergic processes involved in the control of dopamine release from nigrostriatal dopaminergic neurons in the cat. Eur J Pharmacol 48:281–295

    Article  PubMed  Google Scholar 

  • Deschodt-Lankman M, Bui ND, Noyer M, Christophe J (1981) Degradation of cholecystokinin-like peptides by a crude rat brain synaptosomal fraction: a study by high pressure liquid chromatography. Regul Pept 2:15–30

    Article  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1979) Paradoxical excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur J Pharmacol 59:211–218

    Article  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1985) Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Res 333:271–284

    Article  PubMed  Google Scholar 

  • Groves PM, Wilson CJ, Young SJ, Rebec GV (1975) Self-inhibition by dopaminergic neurons. Science 190:522–529

    PubMed  Google Scholar 

  • Hamamura T, Kazahaya Y, Otsuki S (1989) Ceruletide suppresses endogeneous dopamine release via vagal system, studied by in vivo intracerebral dialysis. Brain Res 483:78–83

    Article  PubMed  Google Scholar 

  • Hommer DW, Palkovits M, Crawley JN, Paul SM, Skirboll LR (1985) Cholecystokinin-induced excitation in the substantia nigra: evidence for peripheral and central components. J Neurosci 5:1387–1392

    PubMed  Google Scholar 

  • Iadarola MJ, Raines A, Gale K (1979) Differential effects ofn-dipropylacetate and amino-oxyacetic acid on γ-aminobutyric acid levels in discrete areas of rat brain. J Neurochem 33:1119–1123

    PubMed  Google Scholar 

  • Iadarola MJ, Gale K (1981) Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mol Cell Biochem 39:305–330

    Article  PubMed  Google Scholar 

  • König JFR, Klippel RA (1967) The rat brain; a stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams & Wilkins, Bartimore

    Google Scholar 

  • Kuroki T, Matsumoto T, Hirano M, Kagoshima H, Yao H, Uchimura H, Nakamura K, Nakahara T (1987) Long-lasting effect of systemically administered caerulein on monoaminergic neuronal pathways in rat brain. Neuropeptides 9:169–176

    Article  PubMed  Google Scholar 

  • Löscher W (1981) Correlation between alterations in brain GABA metabolism and seizure excitability following administration of GABA aminotransferase inhibitors and valproic acid — a reevaluation. Neurochem Int 3:397–404

    Article  Google Scholar 

  • Lowry O, Rosebrough N, Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • Lucignani G, Porrino LJ, Tamminga C (1984) Effects of systemically administered cholecystokinin-octapeptide on local cerebral metabolism. Eur J Pharmacol 101:147–151

    Article  PubMed  Google Scholar 

  • Marco E, Mao CC, Cheney DL, Revuelta A, Costa E (1976) The effects of antipsychotics on the turnover rate of GABA and acetylcholine in rat brain nuclei. Nature 264:363–365

    Google Scholar 

  • Matsumoto T, Nakahara T, Uchimura H, Hirano M, Yokoo H, Nakamura K, Oomagari K (1984) Effect of systemically administered caerulein on dopamine metabolism in rat brain. Brain Res 324:195–199

    Google Scholar 

  • McGeer PL, McGeer EG (1975) Evidence for glutamic acid decarboxylase-containing interneurons in the neostriatum. Brain Res 91:331–335

    Article  PubMed  Google Scholar 

  • Moroji T, Hagino Y (1987) Bilateral subdiaphragmatic vagotomy does not prevent the behavioral effects of systematically administered ceruletide in mice. Neuropeptides 9:217–224

    Article  PubMed  Google Scholar 

  • Nakamura K, Matsumoto T, Hirano M, Kagoshima H, Kuroki T, Yao H, Uchimura H, Nakahara T (1987) Mass fragmentographic determination of γ-aminobutyric acid and glutamic acid in discrete amygdaloid nuclei of rat brain. J Neurochem 48:1842–1844

    PubMed  Google Scholar 

  • Nishikawa T, Tanaka M, Koga I, Uchida Y (1985) Biphasic and long-lasting effect of ceruletide on tardive dyskinesia. Psychopharmacology 86:43–44

    Article  PubMed  Google Scholar 

  • Pericic D, Walters JR, Chase TN (1977) Effect of diazepam and pentobarbital on aminooxyacetic acid-induced accumulation of GABA. J Neurochem 29:839–846

    PubMed  Google Scholar 

  • Scheel-Krüger J, Arnt J, Magelund G, Olianas M, Przewlocka B, Christensen AV (1980) Behavioural functions of GABA in basal ganglia and limbic system. Brain Res Bull 5:261–267

    Article  Google Scholar 

  • Shimoyama M, Kito S (1989) Effect of cerulein on in vivo release of acetylcholine from the rat striatum. Brain Res 492:381–384

    Article  PubMed  Google Scholar 

  • Skirboll LR, Grace AA, Hommer DW, Rehfeld J, Goldstein M, Hökfelt T, Bunney BS (1981) Peptide-monoamine coexistence: studies of the actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons. Neuroscience 6:2111–2124

    Article  PubMed  Google Scholar 

  • Vanderhaegen JJ, Lotstra F, de Mey J, Gilles C (1980) Immunohistochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci USA 77:1190–1194

    PubMed  Google Scholar 

  • Van Ree JM, Gaffori O, De Wied D (1983) In rats, the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents. Eur J Pharmacol 93:63–78

    Article  PubMed  Google Scholar 

  • Waszczak BL, Eng N, Walters JR (1980) Effects of muscimol and picrotoxin on single unit activity of substantia nigra neurons. Brain Res 188:185–197

    Article  PubMed  Google Scholar 

  • Zetler G (1981) Central depressant effects of caerulein and cholecystokinin octapeptide (CCK-8) differ from those of diazepam and haloperidol. Neuropharmacology 20:277–283

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, K., Matsumoto, T., Hirano, M. et al. Changes in GABA content and turnover in discrete regions of rat brain after systemic administration of caerulein. Psychopharmacology 101, 73–76 (1990). https://doi.org/10.1007/BF02253721

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253721

Key words

Navigation