Skip to main content
Log in

Approximating the inverse of a matrix for use in iterative algorithms on vector processors

Näherungsweise Berechnung einer in iterativen Algorithmen auf Vektor-Prozessoren verwendbaren Matrixinversen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Most iterative techniques for solving the symmetric positive-definite systemAx=b involve approximating the matrixA by another symmetric positive-definite matrixM and then solving a system of the formMz=d at each iteration. On a vector machine such as the CDC-STAR-100, the solution of this new system can be very time consuming. If, however, an approximationM −1 can be given toA −1, the solutionz=M −1 d can be computed rapidly by matrix multiplication, a fast operation on the STAR. Approximations using the Neumann expansion of the inverse ofA give reasonable forms forM −1 and are presented. Computational results using the conjugate gradient method for the “5-point” matrixA are given.

Zusammenfassung

Die meisten iterativen Methoden zur Lösung des symmetrischen positiv-definitiven SystemsAx=b enthalten die Näherung der MatrixA durch eine andere symmetrische positiv-definitive MatrixM und anschließend daran die Lösung eines Systems der ArtMz=d bei jeder Wiederholung. Auf einer Vektor-Maschine wie der CDC-STAR-100 kann die Lösung dieses neuen Systems sehr zeitraubend sein. Wenn jedoch eine NäherungM −1 zuA −1 gegeben werden kann, so kann die Lösungz=M −1 d sehr schnell durch Matrixmultiplikation errechnet werden. Diese Kalkulation kann auf dem STAR schnell ausgeführt werden. Näherungen, bei denen die Neumann-Entwicklung der Inversen vonA verwendet wird, ergeben angemessene Ausdrücke fürM −1. Diese Ausdrücke sind angeführt. Die mit Hilfe der Konjugierten-Gradienten-Methode errechneten Resultate für die „5-Punk”-MatrixA sind angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cline, A. K.: Several observations on the use of conjugate gradient Methods. ICASE, NASA Langley Research Center (Hampton, Va.).

  2. Concus, P., Golub, G. H., O'Leary, D. P.: A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. Computer Science Dept., Stanford University, STAN-CS-76-533 (January, 1976).

  3. Greenbaum, A., Rodrigue, G. H.: The incomplete Cholesky conjugate gradient method for the Star (5-Point Operator). UCID-Lawrence Livermore Laboratory (Livermore, CA., July 1977).

    Google Scholar 

  4. McMahon, F. H., Sloan, L. J., Long, G. A.: Stacklibe—a vector function library of optimum stack-loops for the CDC 7600. UCID-30083, Lawrence Livermore Laboratory (Livermore, CA., 1976).

    Google Scholar 

  5. Meijerink, J. A., van der Vorst, H. A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. of Comp.1977, 148–162.

  6. Nelson, H.: TIMTBL-STAR instruction times. Lawrence Livermore Laboratory (Livermore, CA., November 1976).

    Google Scholar 

  7. Varga, R. S.: Matrix iterative analysis. Prentice-Hall 1962.

  8. Young, D.: Iterative solution of large linear systems. Academic Press 1971.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, P.F., Greenbaum, A. & Rodrigue, G.H. Approximating the inverse of a matrix for use in iterative algorithms on vector processors. Computing 22, 257–268 (1979). https://doi.org/10.1007/BF02243566

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243566

Keywords

Navigation