Skip to main content
Log in

Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation

  • Original Articles
  • Published:
Biofeedback and Self-regulation Aims and scope Submit manuscript

Abstract

Recent neurophysiological findings in relation to thalamocortical mechanisms for sensory processing, together with established anatomical and expanding functional evidence, have provided a rational theoretical framework for the interpretation of normal and abnormal EEG rhythmic activities. This perspective is integrated here with earlier animal studies which were the foundation for many current applications of EEG self-regulation as a clinical tool. Basic evidence concerning the origins, frequency modulation, and functional significance of normal EEG rhythmic activities is reviewed here in an effort to provide guiding principles for the interpretation of clinical abnormalities and their remediation with EEG feedback training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, P., & Andersson, S. A. (1968).Physiological basis of the alpha rhythm. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Babb, M. I., & Chase, M. H. (1974). Masseteric and digastric reflex activity during conditioned sensorimotor rhythm.Electroencephalography and Clinical Neurophysiology, 36, 357–365.

    PubMed  Google Scholar 

  • Baldy-Moulinier, M. (1982). Temporal lobe epilepsy and sleep organization. In M. B. Sterman, M. N. Shouse, & P. Passouant (Eds.),Sleep and epilepsy (pp. 347–359). New York: Academic.

    Google Scholar 

  • Berger, H. (1930). On the electroencephalogram of man, II.Journal for Psychology and Neurology, 40, 160–179.

    Google Scholar 

  • Berlyne, D. E. (1971).Aesthetics and psychobiology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Boff, K. R., Kaufman, L., & Thomas, J. P. (1986).Handbook of perception and human performance: Vol. II,Cognitive processes and performance. New York: Wiley-Interscience.

    Google Scholar 

  • Bouyer, J. J., Dedet, L., Debray, O., & Rougeul, A. (1978). Restraint in primate chair may cause unusual behavior in baboons; Electrocorticographic correlates and corrective effects of diazepam.Electroencephalography and Clinical Neurophysiology, 44, 562–567.

    PubMed  Google Scholar 

  • Bouyer, J. J., Dedet, L., Konya, A., & Rougeul, A. (1974). Convergence de trois systemes rhythmiques thalamocorticaux sur l'aire somesthesque du chat et du babouin normaux.Review EEG Neurophysiologie, 4, 397–406.

    Google Scholar 

  • Bowersox, S. S., Siegel, J. M., & Sterman, M. B. (1978). Effects of restraint on EEG variables and monomethylhydrazine seizures in the cat.Experimental Neurology, 61, 154–164.

    PubMed  Google Scholar 

  • Bowersox, S. S., & Sterman, M. B. (1981). Changes in sensorimotor sleep spindle activity and seizure susceptibility following somatosensory deafferentation.Experimental Neurology, 74, 814–828.

    PubMed  Google Scholar 

  • Bowersox, S. S., & Sterman, M. B. (1982). Effects of somatosensory deafferentation on spectral characteristics of the sensorimotor EEG in the adult cat.Experimental Neurology, 77, 403–418.

    PubMed  Google Scholar 

  • Carpenter, M. B. (1991).Core text of neuroanatomy (4th ed., Chap. 5). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Chase, M. H., & Harper, R. M. (1971). Somatomotor and visceromotor correlates of operantly conditioned 12–14 c/s sensorimotor cortical activity.Electroencephalography and Clinical Neurophysiology, 31, 85–92.

    PubMed  Google Scholar 

  • Cowan, J. D. (1993). Alpha-theta brainwave biofeedback: The many possible theoretical reasons for its success.Biofeedback, 21, 11–16.

    Google Scholar 

  • Galletti, C., Battaglini, P. P., & Fattori, P. (1993). Parietal neurons encoding spatial locations in craniotopic coordinates.Experimental Brain Research, 96, 221–229.

    Google Scholar 

  • Gloor, P., Pellegrini, A., & Kostopoulos, G. K. (1979). Effects of changes in cortical excitability upon the epileptic bursts in generalized penicillin epilepsy of the cat.Electroencephalography and Clinical Neurophysiology, 46, 274–289.

    PubMed  Google Scholar 

  • Hamel, A. R., & Sterman, M. B. (1982). Sleep and epileptic abnormalities during sleep. In M. B. Sterman, M. N. Shouse, & P. Passouant (Eds.),Sleep and epilepsy (pp. 361–377). New York: Academic.

    Google Scholar 

  • Harper, R. M., & Sterman, M. B. (1972). Subcortical unit activity during a conditioned 12–14 Hz sensorimotor EEG rhythm in the cat.Federation Proceedings, 31, 404.

    Google Scholar 

  • Holcomb, V., Sterman, M. B., Goodman, S. J., & Fairchild, M. D. (1979). The immobilization response in rhesus monkeys: a behavioral and electroencephalographic study.Experimental Neurology, 63, 420–435.

    PubMed  Google Scholar 

  • Howe, R. C., & Sterman, M. B. (1972). Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat.Electroencephalography and Clinical Neurophysiology, 32, 681–695.

    PubMed  Google Scholar 

  • Howe, R. C., & Sterman, M. B. (1973). Somatosensory system evoked potentials during waking behavior and sleep in the cat.Electroencephalography and Clinical Neurophysiology, 34, 605–618.

    PubMed  Google Scholar 

  • Jasper, H. H., & Penfield, W. (1949). Electrocorticograms in man: Effect of the voluntary movement upon the electrical activity of the precentral gyrus.Archives of Psychiatry and Neurology, 183, 163–174.

    Google Scholar 

  • Jones, E. G. (1985).The thalamus, New York: Plenum.

    Google Scholar 

  • Krosigk, M. von, Bal, T., & McCormick, D. A. (1993). Cellular mechanisms of a synchronized oscillation in the thalamus.Science, 261, 361–364.

    PubMed  Google Scholar 

  • Kuhlman, W. N., & Kaplan, B. J. (1979). Clinical applications of EEG feedback training. In R. J. Gatchel & K. P. Price (Eds.),Clinical applications of biofeedback: Appraisal and status. New York: Pergamon.

    Google Scholar 

  • Lantz, D., & Sterman, M. B. (1988). Neuropsychological assessment of subjects with uncontrolled epilepsy: Effects of EEG feedback training.Epilepsia, 29, 163–171.

    PubMed  Google Scholar 

  • Llinas, R., & Jahnsen, H. (1982). Electrophysiology of mammalian thalamic neurons.Nature, 297, 406–408.

    PubMed  Google Scholar 

  • Lopes da Silva, F. H., Van Leirop, T. H. M. T., Schrijer, C. F. M., & Storm van Leeuwen, W. (1973). Organization of thalamic and cortical alpha rhythm: Spectra and coherences.Electroencephalography and Clinical Neurophysiology, 35, 627–639.

    PubMed  Google Scholar 

  • Lopes da Silva, F. H., Vos, J. E., Mooibroek, J., & Van Rotterdam, A. (1980). Relative contributions of intracortical and thalamocortical processes in the generation of alpha rhythms, revealed by partial coherence analyses.Electroencephalography and Clinical Neurophysiology, 50, 449–456.

    PubMed  Google Scholar 

  • Lubar, J. F., & Bahler, W. W. (1976). Behavioral management of epileptic seizures following biofeedback training of the sensorimotor rhythm.Biofeedback and Self-Regulation, 1, 77–104.

    PubMed  Google Scholar 

  • Lubar, J. O., & Lubar, J. F. (1984). Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting.Biofeedback and Self-Regulation, 9, 1–23.

    PubMed  Google Scholar 

  • Lubar, J. F., & Shouse, M. N. (1976). EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): A preliminary report.Biofeedback and Self-Regulation, 3, 293–306.

    Google Scholar 

  • Mann, C. A., Lubar, J. F., Zimmerman, A. W., Miller, C. A., & Muenchen, R. A. (1992). Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: Controlled study with clinical implications.Pediatric Neurology, 8, 30–36.26.

    PubMed  Google Scholar 

  • Mann, C. A., Sterman, M. B., Suyenobu, B. Y., & Kaiser, D. A. (1995). Suppression of EEG rhythmic frequencies during somato-motor and visuo-motor behavior.International Journal of Psychophysiology, in press.

  • McCormick, D. A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity.Progress in Neurobiology, 39, 337–388.

    PubMed  Google Scholar 

  • McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons.Journal of Neurophysiology, 68, 1384–1400.

    PubMed  Google Scholar 

  • Pavlov, I. P. (1927).Conditioned reflexes. Oxford: Oxford U.P.

    Google Scholar 

  • Peniston, E. G., & Kulkosky, P. J. (1989). Alpha-theta brainwave training and b-endorphin levels in alcoholics.Alcoholism: Clinical and Experimental Research, 13, 271–279.

    Google Scholar 

  • Peniston, E. G., & Kulkosky, P. J. (1990). Alcoholic personality and alpha-theta brainwave training.Medical Psychotherapy, 3, 37–55.

    Google Scholar 

  • Pfurtscheller, G. (1981). Central beta rhythm during sensory motor activities in man.Electroencephalography and Clinical Neurophysiology, 51, 253–264.

    PubMed  Google Scholar 

  • Pfurtscheller, G. (1992). Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest.Electroencephalography and Clinical Neurophysiology, 83, 62–69.

    PubMed  Google Scholar 

  • Pfurtscheller, G., & Aranibar, A. (1977). Event-related cortical desynchronization detected by power measurements of scale EEG.Electroencephalography and Clinical Neurophysiology, 42 817–826.

    PubMed  Google Scholar 

  • Pfurtscheller, G., & Klimesch, W. (1991). Event-related desynchronization during motor behavior and visual information processing. In C. H. M. Brunia, G. Mulder, & M. N. Verbaten (Eds.),Event-related brain research (pp. 58–65). (EEG Suppl. 42).

  • Pinault, D., & Deschenes, M. (1992). Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vivo.Neuroscience, 51, 245–258.

    PubMed  Google Scholar 

  • Ray, W., & Cole, H. (1985). EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes.Science, 228, 750–752.

    PubMed  Google Scholar 

  • Rosen, I., Blennow, G., Risberg, A. M., & Ingvar, D. H. (1982). Quantitative evaluation of nocturnal sleep in epileptic children. In M. B. Sterman, M. N. Shouse, & P. Passouant (Eds.),Sleep and epilepsy, (pp. 397–409). New York: Academic.

    Google Scholar 

  • Roth, S. R., Sterman, M. B., & Clemente, C. C. (1967). Comparison of EEG correlates of reinforcement, internal inhibition, and sleep.Electroencephalography and Clinical Neurophysiology, 23, 509–520.

    PubMed  Google Scholar 

  • Rougeul, A., Bouyer, J. J., Dedet, L., & Debray, O. (1979). Fast somatoparietal rhythms during combined focalized attention and immobility in baboon and squirrel monkey.Electroencephalography and Clinical Neurophysiology, 46, 310–319.

    PubMed  Google Scholar 

  • Shouse, M. N., & Lubar, J. F. (1979). Operant conditioning of EEG rhythms and ritalin in the treatment of hyperkinesis.Biofeedback and Self-Regulation, 4, 299–312.

    PubMed  Google Scholar 

  • Shouse, M. N., Siegel, J. M., Wu, M. F., Szymusiak, R., & Morrisson, A. R. (1989). Mechanisms of seizure suppression during rapid eye movement (REM) sleep in cats.Brain Research, 505, 271–282.

    PubMed  Google Scholar 

  • Shouse, M. N., & Sterman, M. B. (1979). Changes in seizure susceptibility, sleep time and sleep spindles following thalamic and cerebellar lesions.Electroencephalography and Clinical Neurophysiology, 46, 1–12.

    PubMed  Google Scholar 

  • Sprague, J. M. (1966). Visual, acoustic and somesthetic deficits in the cat after cortical and midbrain lesions. In D. Purpura & M. Yahr (Eds.).The thalamus (pp. 391–414). New York: Columbia U.P.

    Google Scholar 

  • Steriade, M., Curro Dossi, R., & Nunez, A. (1991). Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.The Journal of Neuroscience, 11, 3200–3217.

    PubMed  Google Scholar 

  • Steriade, M., & Deschenes, M. (1988). Intrathalamic and brainstem-thalamic networks involved in resting and alert states. In M. Bentivoglio & R. Spreafico (Eds.).Cellular thalamic mechanisms (pp. 37–62). Amsterdam: Elsevier.

    Google Scholar 

  • Steriade, M., & Llinas, R. R. (1988). The functional states of the thalamus and the associated neuronal interplay.Physiological Reviews, 68, 649–742.

    PubMed  Google Scholar 

  • Steriade, M., Gloor, P., Llinas, R. R., Lopes da Silva, F. H., & Mesulam, M. M. (1990). Basic mechanisms of cerebral rhythmic activities.Electroencephalography and Clinical Neurophysiology, 76, 481–508.

    PubMed  Google Scholar 

  • Sterman, M. B. (1977). Effects of sensorimotor EEG feedback training on sleep and clinical manifestations of epilepsy. In J. Beatty and H. Legewie (Eds.),Biofeedback and behavior (pp. 167–200). New York: Plenum.

    Google Scholar 

  • Sterman, M. B. (1981). Power spectral analysis of EEG characteristics during sleep in epileptics.Epilepsia, 22, 95–106.

    PubMed  Google Scholar 

  • Sterman, M. B. (1982). EEG biofeedback in the treatment of epilepsy: An overview circa 1980. In L. White & B. Tursky (Eds.),Clinical biofeedback: Efficacy and mechanisms (pp. 311–330). New York: Guilford.

    Google Scholar 

  • Sterman, M. B. (1986). Epilepsy and its treatment with EEG feedback therapy.Annals of Behavioral Medicine, 8, 21–25.

    Google Scholar 

  • Sterman, M. B. (1993). Sensorimotor EEG feedback training in the study and treatment of epilepsy. In D. I. Mostofsky & Y. Loyning (Eds.).Neurobehavioral treatment of epilepsy (pp. 1–17). New Jersey: Erlbaum.

    Google Scholar 

  • Sterman, M. B., & Bowersox, S. S. (1981). Sensorimotor electroencephalograph rhythmic activity: A functional gate mechanism.Sleep, 4, 408–422.

    PubMed  Google Scholar 

  • Sterman, M. B., & Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training.Electroencephalography and Clinical Neurophysiology, 33, 89–95.

    PubMed  Google Scholar 

  • Sterman, M. B., Goodman, S. J., & Kovalesky, R. A. (1978). Effects of sensorimotor EEG feedback training on seizure susceptibility in the rhesus monkey.Experimental Neurology, 62, 735–747.

    PubMed  Google Scholar 

  • Sterman, M. B., Howe, R. D., & MacDonald, L. R. (1970). Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake.Science, 167, 1146–1148.

    PubMed  Google Scholar 

  • Sterman, M. B., Kaiser, D. A., & Veigel, B. (1995). Event-related EEG spectra responses during the Continuous Performance Test.Electroencephalography and Clinical Neurophysiology, submitted.

  • Sterman, M. B., LoPresti, R. W., & Fairchild, M. D. (1969). Electroencephalographic and behavioral studies of monomethylhydrazine toxicity in the cat. Technical Report AMRL-TR-69-3, Wright-Patterson Air Force Base, Ohio, Air Systems Command.

    Google Scholar 

  • Sterman, M. B., & Macdonald, L. R. (1978). Effects of central cortical EEG feedback training on incidence of poorly controlled seizures.Epilepsia, 19, 207–222.

    PubMed  Google Scholar 

  • Sterman, M. B., MacDonald, L. R., & Stone, R. K. (1974). Biofeedback training of the sensorimotor EEG rhythm in man: Effects on epilepsy.Epilepsia, 15, 395–417.

    PubMed  Google Scholar 

  • Sterman, M. B., & Mann, C. A. (1995). Concepts and applications of EEG analysis in aviation performance evaluation.Biological Psychology, 40, 115–130.

    PubMed  Google Scholar 

  • Sterman, M. B., Mann, C. A., Kaiser, D. A., & Suyenobu, B. Y. (1994). Multiband topographic EEG analysis of a simulated visuomotor aviation task.International Journal of Psychophysiology, 16, 49–56.

    PubMed  Google Scholar 

  • Sterman, M. B., & Shouse, M. N. (1980). Quantitative analysis of training, sleep EEG, and clinical response to EEG operant conditioning in epileptics.Electroencephalography and Clinical Neurophysiology, 49, 558–576.

    PubMed  Google Scholar 

  • Sterman, M. B., & Wyrwicka, W. (1967). EEG correlates of sleep: Evidence for separate forebrain substrates.Brain Research, 6, 143–163.

    PubMed  Google Scholar 

  • Sterman, M. B., Wyrwicka, W., & Roth, S. R. (1969). Electrophysiological correlates and neural substrates of alimentary behavior in the cat.Annals of the New York Academy of Science, 157, 723–739.

    Google Scholar 

  • Stone, L. S., & Lisberger, S. G. (1990). Visual responses of purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys: II. Complex Spikes.Journal of Neurophysiology, 63, 1262–1275.

    PubMed  Google Scholar 

  • Tansey, M. A. (1985). Brainwave Signatures. An index reflective of the brain's functional neuroanatomy: Further findings on the effect of EEG sensorimotor rhythm feedback training on the neurologic precursors of learning disabilities.International Journal of Psychophysiology, 4, 91–97.

    Google Scholar 

  • Veigel, B., & Sterman, M. B. (1993). Topographic EEG correlates of good and poor performance in a signal recognition task.Proceedings of the Human Factors Society 37th Annual Meeting, 1, 147–151.

    Google Scholar 

  • Wickramasekera, I. (1993). Observations, speculations and an experimentally testable hypothesis on the mechanism of the presumed efficacy of the Peniston and Kulkosky procedure.Biofeedback, 21, 17–20.

    Google Scholar 

  • Warren, R. A., & Jones, E. G. (1994). Glutamate activation of cat thalamic reticular nucleus: Effects on response properties of ventroposterior neurons.Experimental Brain Research, 100, 215–226.

    Google Scholar 

  • Wood, J. D., & Peesker, S. J. (1974). Development of an expression which relates the excitable state of the brain to the level of GAD activity and GABA content, with particular reference to the action of hydrazine and its derivatives.Journal of Neurochemistry, 23, 703–712.

    PubMed  Google Scholar 

  • Wyler, A. R. (1984). Operant conditioning of single neurons in monkeys and its theoretical application to EEG operant conditioning in human epilepsy. In Th. Elbert, B. Rockstroh, W. Lutzenberger, & N. Birbaumer (Eds.).Self-regulation of the brain and behavior (pp. 85–94). New York: Springer-Verlag.

    Google Scholar 

  • Wyrwicka, W., & Sterman, M. B. (1968). Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat.Physiology and Behavior, 3, 703–707.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author wishes to thank the many colleagues whose work and collaboration have contributed to the concepts discussed in this review. In particular, I would like to express my sincere appreciation to Drs. Wanda Wyrwicka, Scott Bowersox, Margaret Shouse, William Kuhlman, Allen Wyler, Ronald Szymusiak, and David Kaiser. I would also like to thank Mrs. Jerri Kaiser for her assistance in the preparation of this manuscript. The work presented here from my laboratory has been supported by the Veterans Administration, the National Institutes of Health, the U.S. Air Force, and the Northrop-Grumman Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sterman, M.B. Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self-Regulation 21, 3–33 (1996). https://doi.org/10.1007/BF02214147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214147

Descriptor Key Words

Navigation