Skip to main content
Log in

Primary structure and evolutionary relationship between the adult α-globin genes and their 5′-flanking regions ofXenopus laevis andXenopus tropicalis

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

To investigate the evolution of globin genes in the genusXenopus, we have determined the primary structure of the related adult α1- and αII genes ofX. laevis and of the adult α-globin gene ofX. tropicalis, including their 5′-flanking regions. All three genes are comprised of three exons and two introns at homologous positions. The exons are highly conserved and code for 141 amino acids. By contrast, the corresponding introns vary in length and show considerable divergence. Comparison of 900 bp of the 5′-flanking region revealed that theX. tropicalis gene contains a conserved proximal 310-bp promoter sequence, comprised of the canonical TATA and CCAAT motifs at homologous positions, and five conserved elements in the same order and at similar positions as previously shown for the corresponding genes ofX. laevis. We therefore conclude that these conserved upstream elements may represent regulatory sequences for cell-specific regulation of the adultXenopus globin genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bendig MM, Williams JG (1983) Replication and expression ofXenopus laevis globin genes injected into fertilizedXenopus eggs. Proc Natl Acad Sci USA 80:6197–6201

    Google Scholar 

  • Bisbee CA, Baker MA, Wilson AC, Hadji-Azimi I, Fischberg M (1977) Albumin phylogeny for clawed frogs (Xenopus). Science 195:785–787

    Google Scholar 

  • Bozzoni I, Tagnoni A, Perandrei-Amaldi P, Beccari E, Buongiorno-Nardelli M, Amaldi F (1982) Isolation and structural analysis of ribosomal protein genes inXenopus laevis. J Mol Biol 161:353–371

    Google Scholar 

  • Breathnach R, Benoist C, O'Hare K, Gannon F, Chambon P (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75:4853–4857

    Google Scholar 

  • Chien Y-H, Dawid IB (1984) Isolation and characterization of calmodulin genes fromXenopus laevis. Mol Cell Biol 4:507–513

    Google Scholar 

  • Dodgson JB, Engel JD (1983) The nucleotide sequence of the adult chicken α-globin genes. J Biol Chem 258:4623–4629

    Google Scholar 

  • Hosbach HA, Wyler T, Weber R (1983) TheXenopus laevis globin gene family: chromosomal arrangement and gene structure. Cell 32:45–53

    Google Scholar 

  • Jeffreys AJ, Wilson V, Wood D, Simons JP, Kay RM, Williams JG (1980) Linkage of adult α- and β-globin genes inX. laevis and gene duplication by tetraploidization. Cell 21:555–564

    Google Scholar 

  • Kay RM, Harris R, Patient RK, Williams JG (1983) Complete nucleotide sequence of a cloned cDNA derived from the major adult α-globin mRNA ofX. laevis. Nucleic Acids Res 11: 1537–1542

    Google Scholar 

  • Knöchel W, Meyerhof W, Hummel S, Grundmann U (1983) Molecular cloning and sequencing of mRNA coding for minor adult globin polypeptides ofXenopus laevis. Nucleic Acids Res 11:1543–1553

    Google Scholar 

  • Knöchel W, Korge E, Basner A, Meyerhof W (1986) Globin evolution in the genusXenopus: comparative analysis of cDNAs coding for adult globin polypeptides ofXenopus borealis andXenopus tropicalis. J Mol Evol 23:211–223

    Google Scholar 

  • Liebhaber SA, Goossens MJ, Wai Kan Y (1980) Cloning and complete nucleotide sequence of human 5′-α-globin gene. Proc Natl Acad Sci USA 77:7054–7058

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY

    Google Scholar 

  • Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double-digit restriction fragments. Gene 19:269–276

    Google Scholar 

  • Meyerhof W, Köster M, Stalder J, Weber R, Knöchel W (1986) Sequence analysis of the larval βII gene ofXenopus laevis. Mol Biol Rep 11:155–161

    Google Scholar 

  • Michelson AM, Orkin SH (1983) Boundaries of gene conversion within the duplicated human α-globin genes. J Biol Chem 258:15245–15254

    Google Scholar 

  • Ryffel GU, McCarthy BJ (1975) Complexity of cytoplasmic RNA in different mouse tissues measured by hybridization of polyadenylated RNA to complementary DNA. Biochemistry 14:1379–1385

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Sege RD, Söll D, Ruddle FH, Queen C (1981) A conversational system for the computer analysis of nucleic acid sequences. Nucleic Acids Res 9:437–444

    Google Scholar 

  • Stalder J, Meyerhof W, Wirthmüller U, Gruber A, Wyler T, Knöchel W, Weber R (1986) Conserved sequences and cell specific DNase I hypersensitive sites upstream of the coordinately expressed α1- and αII-globin genes ofXenopus laevis. J Mol Biol 188:119–128

    Google Scholar 

  • Stutz F, Spohr G (1986) Isolation and characterization of sarcomeric actin genes expressed inXenopus laevis embryos. J Mol Biol 187:349–361

    Google Scholar 

  • Stutz F, Spohr G (1987) A processed gene coding for a sarcomeric actin inXenopus laevis andXenopus tropicalis. EMBO J 6:1989–1995

    Google Scholar 

  • Thiébaud C-H, Fischberg M (1977) DNA content in the genusXenopus. Chromosoma 59:253–257

    Google Scholar 

  • Tymowska J, Fischberg M (1982) A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid speciesXenopus epitropicalis Fischberg and Picard with those ofXenopus tropicalis Gray (Anura, Pipidae). Cytogenet Cell Genet 34:149–157

    Google Scholar 

  • Wahli W, Dawid IB (1980) Isolation of two closely related vitellogenin genes, including their flanking regions from aXenopus laevis gene library. Proc Natl Acad Sci USA 77: 1437–1441

    Google Scholar 

  • Westley B, Wyler T, Ryffel G, Weber R (1981)Xenopus laevis serum albumins are encoded in two closely related genes. Nucleic Acids Res 9:3557–3574

    Google Scholar 

  • Widmer HJ, Andres A-C, Niessing J, Hosbach HA, Weber R (1981) Comparative analysis of cloned larval and adult globin cDNA sequences ofXenopus laevis. Dev Biol 88:325–332

    Google Scholar 

  • Wilson AC, Ochman H, Prager EM (1987) Molecular time scale for evolution. Trends Genetics 3:241–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stalder, J., Wirthmüller, U., Beck, J. et al. Primary structure and evolutionary relationship between the adult α-globin genes and their 5′-flanking regions ofXenopus laevis andXenopus tropicalis . J Mol Evol 28, 64–71 (1988). https://doi.org/10.1007/BF02143498

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143498

Key words

Navigation