Skip to main content
Log in

Intrinsic and extrinsic neural and neurohumoral control of the decapod heart

  • Multi-Author Reviews
  • Control of Circulation in Invertebrates
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The intra-cardiac nervous system of the decapod heart is composed of large and small ganglionic cells (LGCs and SGCs) and axons of extrinsic cardio-acceleratory and-inhibitory neurons (CAs and CIs). Candidate neurotransmitters for the neurons have been determined by pharmacological, cytochemical and immunocytochemical tests. SGCs may be cholinergic, LGCs and CAs are probably dopaminergic, and CIs are GABAergic. Serotonin and octopamine were cardio-excitatory neuromodulators of the heart. Proctolin, crustacean cardio-active peptide (CCAP), red pigment concentrating hormone (RPCH), and FMRFamide also had modulatory actions on the heart. Proctolin was the most potent peptide, which acted primary on the cardiac ganglion. Insect adipokinetic hormones had little effect on the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Battelle, B.-A., and Kravitz, E. A., Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J. Pharmac. exp. Ther.205 (1978) 438–448.

    CAS  Google Scholar 

  2. Beltz, B., and Kravitz, E. A., Physiological identification, morphological analysis, and development of identified serotonin-proctolin containing neurons in the lobster ventral nerve cord. J. Neurosci.7 (1987) 533–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benson, J. A., Synaptic and regenerative responses of cardiac muscle fibres in the crab,Portunus sanguinolentus. J. comp. Physiol.143 (1981) 349–356.

    Article  Google Scholar 

  4. Berlind, A., Feedback from motor neurones to pacemaker neurones in lobster cardiac ganglion contributes to regulation of burst frequency. J. exp. Biol.141 (1989) 277–294.

    Article  Google Scholar 

  5. Carlson, A. J., Comparative physiology of the invertebrate heart. Biol. Bull.8 (1905) 123–168.

    Article  Google Scholar 

  6. Cooke, I. M., The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. Am. Zool.6 (1966) 107–121.

    Article  CAS  PubMed  Google Scholar 

  7. Cooke, I. M., Studies on the crustacean cardiac ganglion. Comp. Biochem. Physiol.91C (1988) 205–218.

    Google Scholar 

  8. Cooke, I. M., and Hartline, D. K., Neurohormonal alteration of integrative properties of the cardiac ganglion of the lobsterHomarus americanus. J. exp. Biol.63 (1975) 33–52.

    Article  CAS  PubMed  Google Scholar 

  9. Cooke, I. M., and Sullivan, R. E., Hormones and neurosecretion, in: The Biology of Crustacea, vol. 3, pp. 205–290. Eds H. Atwood and D. Sandeman. Academic Press, New York 1982.

    Chapter  Google Scholar 

  10. Cournil, I., Geffard, M., Moulins, M., and LeMoal, M., Coexistence of dopamine and serotonin in an identified neuron of the lobster nervous system. Brain Res.310 (1984) 397–400.

    Article  CAS  PubMed  Google Scholar 

  11. Delaleu, J. C., and Holley, A., Neural regulation of the heart muscle in an isopod crustacean: acceleration and peripheral inhibition. J. exp. Biol.64 (1976) 345–356.

    Article  CAS  PubMed  Google Scholar 

  12. Dickinson, P. S., and Marder, E., Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone. J. Neurophysiol.61 (1989) 833–844.

    Article  CAS  PubMed  Google Scholar 

  13. Dircksen, H., and Keller, R., Immunocytochemical localization of CCAP, a novel crustacean cardioactive peptide, in the nervous system of the shore crab,Carcinus maenas L Cell Tiss. Res.254 (1988) 347–360.

    Article  Google Scholar 

  14. Evans, P. D., Kravitz, E. A., and Talamo, B. R., Octopamine release at two points along lobster nerve trunks. J. Physiol.262 (1976) 71–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Florey, E., Further evidence for the transmitter-function of Factor-1. Naturwissenschaften44 (1957) 424–425.

    Article  Google Scholar 

  16. Florey, E., and Rathmayer, M., The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. Comp. Biochem. Physiol.61C (1978) 229–237.

    CAS  Google Scholar 

  17. Florey, E., and Rathmayer, M., Pharmacological characterization of cholinoceptors of cardiac ganglion cells of crustaceans. Gen. Pharmac.11 (1980) 47–53.

    Article  CAS  Google Scholar 

  18. Freschi, J. E., and Livengood, D. R., Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. J. Neurophysiol.62 (1989) 984–995.

    Article  CAS  PubMed  Google Scholar 

  19. Friesen, W. O., Synaptic interaction in the cardiac ganglion of the spiny lobsterPanulirus interruptus. J. comp. Physiol.,101 (1975) 191–205.

    Article  Google Scholar 

  20. Grega, D. S., and Sherman, R. G., Responsiveness of neurogenic hearts to octopamine. Comp. Biochem. Physiol.52C (1975) 5–8.

    Google Scholar 

  21. Hallett, M., Lobster heart: electrophysiology of single cells including effects of the regulator nerves. Comp. Biochem. Physiol.39A (1971) 643–648.

    Article  Google Scholar 

  22. Holley, A., and Delaleu, J. C., Electrophysiology of the heart of an isopod crustacean:Porcellio dilatatus. I. General properties. J. exp. Biol.57 (1972) 589–608.

    Article  CAS  PubMed  Google Scholar 

  23. Kobierski, L. A., Beltz, B. S., Trimmer, B. A., and Kravitz, E. A., FMRFamide-like peptides ofHomarus americanus: distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. J. comp. Neurol.266 (1987) 1–15.

    Article  CAS  PubMed  Google Scholar 

  24. Krijgsman, B. J., Contractile and pacemaker mechanisms of the heart of arthropods. Biol. Rev.27 (1952) 320–346.

    Article  Google Scholar 

  25. Kuramoto, T., and Ebara, A., Neurohormonal modulation of the cardiac outflow through the cardioacterial valve in the lobster. J. exp. Biol.111 (1984) 123–130.

    Article  Google Scholar 

  26. Laxmyr, L., Biogenic amines and dopa in the central nervous system of decapod crustaceans. Comp. Biochem. Physiol.77C (1984) 139–143.

    CAS  Google Scholar 

  27. Lemos, J.R., and Berlind, A., Cyclic adenosine monophosphate mediation of peptide neurohormone effects on the lobster cardiac ganglion. J. exp. Biol.90 (1981) 307–326.

    Article  CAS  Google Scholar 

  28. Livingston, M. S., Schaeffer, S. F., and Kravitz, E. A., Biochemistry and ultrastructure of serotonergic nerve endings in the lobster: serotonin and octopamine are contained in different nerve endings. J. Neurobiol.12 (1981) 27–54.

    Article  Google Scholar 

  29. Matsui, K., Kuwasawa, K., and Kuramoto, T., Periodic bursts in large cell preparation of the lobster cardiac ganglion (Panulirus japonicus). Comp. Biochem. Physiol.56A (1977) 313–324.

    Article  Google Scholar 

  30. Maynard, D. M., Circulation and heart function, in: The Physiology of Crustacea, vol. 1, pp. 161–226. Ed. T. H. Waterman. Academic Press, New York 1960.

    Google Scholar 

  31. Maynard, D. M., Cardiac inhibition in decapod crustacea, in: Nervous Inhibition, pp. 144–178. Ed. E. Florey. Pergamon Press, Oxford, New York 1961.

    Google Scholar 

  32. Maynard, E. A., Microscopic localization of cholinesterases in the nervous systems of the lobsters,Panulirus argus andHomarus americanus. Tiss. Cell3 (1971) 215–250.

    Article  CAS  Google Scholar 

  33. Mercier, A. J., Orchard, I., and TeBrugge, V., FMRFamide-like immunoreactivity in the crayfish nervous system. J. exp. Biol.156 (1991) 519–538.

    Article  CAS  PubMed  Google Scholar 

  34. Miller, M. W., Benson, J. A., and Berlind, A., Excitatory effects of dopamine on the cardiac ganglia of the crabsPortunus sanguinolentus andPodophthalmus vigil. J. exp. Biol.108 (1984) 97–118.

    Article  CAS  PubMed  Google Scholar 

  35. Miller, M. W., and Sullivan, R. E., Some effects of proctolin on the cardiac ganglion of the Maine lobster,Homarus americanus (Milne Edwards). J. Neurobiol.12 (1981) 629–639.

    Article  CAS  PubMed  Google Scholar 

  36. Nusbaum, M. P., and Marder, E., A neural role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab,Cancer borealis. J. exp. Biol.135 (1988) 165–181.

    Article  CAS  Google Scholar 

  37. Ocorr, K. A., and Berlind, A., The identification and localization of a catecholamine in the motor neurons of the lobster cardiac ganglion. J. Neurobiol.14 (1983) 51–59.

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz, T. L., Lee, G. M.-H., Siwicki, K. K., Standaert, D. G., and Kravitz, E. A., Proctolin in the lobster: the distribution, release, and chemical characterization of a likely neurohormone. J. Neurosci.4 (1984) 1300–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seeman, P., Brain dopamine receptors. Pharmac. Rev.32 (1981) 229–313.

    Google Scholar 

  40. Sherff, C. M., and Mulloney, B., Red pigment concentrating hormone is a modulator of the crayfish swimmeret system. J. exp. Biol.155 (1991) 21–35.

    Article  CAS  PubMed  Google Scholar 

  41. Shimahara, T., The inhibitory postsynaptic potential in the cardiac ganglion cell of the lobster,Panulirus japonicus. Sci. Rep. Tokyo Kyoiku Daigaku B14 (1969) 9–26.

    Google Scholar 

  42. Siwicki, K. K., and Bishop, C. A., Mapping of proctolin-like immunoreactivity in the nervous systems of lobster and crayfish. J. comp. Neurol.243 (1986) 435–453.

    Article  CAS  PubMed  Google Scholar 

  43. Stangier, J., Dircksen, H., and Keller, R., Identification and immunocytochemical localization of proctolin in pericardial organs of the shore crab,Carcinus maenas. Peptides7 (1986) 67–72.

    Article  CAS  PubMed  Google Scholar 

  44. Sullivan, R. E., A proctolin-like peptide in crab pericardial organs (1). J. exp. Zool.210 (1979) 543–552.

    Article  CAS  Google Scholar 

  45. Sullivan, R. E., Friend, B. J., and Barker, D. L., Structure and function of spiny lobster ligamental nerve plexuses: evidence for synthesis, storage, and secretion of biogenic amines. J. Neurobiol.8 (1977) 581–605.

    Article  CAS  PubMed  Google Scholar 

  46. Sullivan, R. E., and Miller, M. W., Actions of acetylcholine on the rhythmic burst activity of cardiac ganglion. Soc. Neurosci. Abstr.8 (1982) 162.

    Google Scholar 

  47. Sullivan, R. E., and Miller, M. W., Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. J. Neurobiol.15 (1984) 173–196.

    Article  CAS  PubMed  Google Scholar 

  48. Sullivan, R. F., and Miller, M. W., Cholinergic activation of the lobster cardiac ganglion. J. Neurobiol.21 (1990) 639–650.

    Article  CAS  PubMed  Google Scholar 

  49. Tameyasu, T., Intracellular potentials in the small cells and cellular interaction in the cardiac ganglion of the lobster,Panulirus japonicus. Comp. Biochem. Physiol.54A (1976) 191–196.

    Article  Google Scholar 

  50. Tanaka, K., Yazawa, T., and Kuwasawa, K., Cholinergic and GABAergic control of the heart of isopodBathynomus doederleini, in: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System. Eds R. B. Hill, K. Kuwasawa, B. R. McMahon and T. Kuramoto, Karger, Basel 1992.

    Google Scholar 

  51. Tazaki, K., and Cooke, I. M., Neuronal mechanisms underlying rhythmic bursts in crustacean cardiac ganglia. Soc. exp. Biol. Symp.37 (1983a) 129–157.

    CAS  Google Scholar 

  52. Tazaki, K., and Cooke, I. M., Separation of neuronal sites of driver potential and impulse generation by ligaturing in the cardiac ganglion of the lobster,Homarus americanus. J. comp. Physiol.A 151 (1983b) 329–346.

    Article  Google Scholar 

  53. Watanabe, A., Obara, S., and Akiyama, T., Inhibitory synapses on pacemaker neurons in the heart ganglion of a stomatopod,Squilla oratoria. J. gen. Physiol.52 (1968) 908–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wiersma, C. A. G., and Novitski, E., The mechanism of the nervous regulation of the crayfish heart. J. exp. Biol.19 (1942) 255–265.

    Article  Google Scholar 

  55. Wilkens, J. L., and McMahon, B. R., Intrinsic properties and extrinsic neuronal control of crab cardiac hemodynamics. Experientia48 (1992) 827–834.

    Article  CAS  Google Scholar 

  56. Wilkens, J. L., and Walker, R. L., Nervous control of crayfish cardiac hemodynamics, in: Phylogenetic Models in functional coupling of the CNS and the Cardiovascular System. Eds R. B. Hill, K. Kuwasawa, B. R. McMahon and T. Kuramoto. Karger, Basel 1992.

    Google Scholar 

  57. Woodruff, G. N., Dopamine receptors: A review. Comp. gen. Pharmac.2 (1971) 439–455.

    Article  CAS  Google Scholar 

  58. Yamagishi, H., and Terano, Y., Inhibitory nervous regulation of myogenic heart beat in juvenileLigia exotica (Crustacea, Isopoda), in: Phylogenetic Models in functional coupling of the CNS and the Cardiovascular System. Eds R. B. Hill, K. Kuwasawa, B. R. McMahon and T. Kuramoto, Karger, Basel 1992.

    Google Scholar 

  59. Yazawa, T., and Kuwasawa, K., The cardio-regulator nerves of the hermit crabs: anatomical and electrophysiological identification of their distribution inside the heart. J. comp. Physiol. A154 (1984a) 871–881.

    Article  Google Scholar 

  60. Yazawa, T., and Kuwasawa, K., The cardio-regulator nerves of the hermit crabs: Multimodal activation of the heart by the acclerator axons. J. comp. Physiol. A155 (1984b) 313–318.

    Article  Google Scholar 

  61. Yazawa, T., and Kuwasawa, K., Electrophysiological and pharmacological analysis of neurotransmitters in the hermit crab heart. Zool. Sci.1 (1984c) 875.

    Google Scholar 

  62. Yazawa, T., and Kuwasawa, K., Effects of amines and their blockers on excitatory synapses in the cardiac nervous system of crustacean,Aniculus aniculus. Zool. Sci.2 (1985) 873.

    Google Scholar 

  63. Yazawa, T., and Kuwasawa, K., Further evidence for postulated neurotransmitters in the heart of the hermit crab. Zool. Sci.6 (1989) 1094.

    Google Scholar 

  64. Yazawa, T., and Kuwasawa, K., Cholinergic, catecholaminergic and GABAergic mechanisms of synaptic transmission in the heart of the hermit crab, in: Frontiers in Crustacean Neurobiology, pp. 401–406. Eds K. Wiese, W.-D. Krenz, J. Tautz, H. Reichert and B. Mulloney. Birkhäuser Verlag, Basel 1990.

    Chapter  Google Scholar 

  65. Yazawa, T., Tanaka, K., and Kuwasawa, K., Effects of putative neurotransmitters on the heart of the isopod crustacean,Bathynomus doederleini. Zool. Sci.7 (1990) 1036.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazawa, T., Kuwasawa, K. Intrinsic and extrinsic neural and neurohumoral control of the decapod heart. Experientia 48, 834–840 (1992). https://doi.org/10.1007/BF02118416

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02118416

Key words