Skip to main content
Log in

Endogenous antioxidant systems of two teleost fish, the rainbow trout and the black bullhead, and the effect of age

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Antioxidant enzyme activities and glutathione status were determined in different tissues of two teleost species, the rainbow trout (Oncorhynchus mykiss) and the black bullhead (Ameiurus melas) to establish whether age-related changes exist between mature and immature individuals. Glutathione reductase and superoxide dismutase activities were significantly lower in hepatic and extrahepatic tissues of 3+ year than 1+ year trout and bullheads. Activities of glutathione peroxidase, catalase and glutathione S-transferase did not exhibit a clear pattern, with decreases in liver and kidney, but increases in gill and muscle tissues. Glutathione concentrations were significantly higher in most tissues of 3+ year than in 1+ year trout, but remained unchanged or decreased in tissues of older bullheads. The results imply an age- or maturation-dependent effect on key antioxidant enzymes in various tissues of these 2 teleost species. Thus, age and maturation may impact upon the use of oxidative stress parameters as indicators of contaminant exposure in environmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

GGT:

γ-glutamyl transpeptidase

GPX:

glutathione peroxidase

GR:

glutathione disulfide reductase

GSH:

reduced glutathione

GSSG:

glutathione disulfide

GST:

glutathione S-transferase

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid reactive substances

TGSH:

total glutathione

References cited

  • Barciela, P., Soengras, J. L., Rey P., Aldegunde, M. and Rozas, G. 1993. Carbohydrate metabolism is several tissues of rainbow trout,Oncorhynchus mykiss, is modified during ovarian recrudescence. Comp. Biochem. Physiol. 106B: 943–948.

    Google Scholar 

  • Beachchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287.

    Google Scholar 

  • Cappozza, G., Guerrieri, F., Vendemiale, G., Altomare, E. and Papa, S. 1994. Age related changes of the mitochondrial energy metabolism in rat liver and heart Arch. Gerontol. Geriatr. Suppl. 4: 31–38.

    Google Scholar 

  • Carlberg, I. and Mannervik, B. 1985. Glutathione reductase. Methods Enzymol. 113: 484–490.

    Google Scholar 

  • Carlander, K.D. 1969. Handbook of Freshwater Fishery Biology. Iowa State University Press, Ames.

    Google Scholar 

  • Chen, L. H., Hu, N. and Snyder, D. L. 1994. Effects of age and dietary restriction on liver glutathione transferase activities in Lobund-Wistar rats Arch. Gerontol. Geriat. 18: 191–205.

    Google Scholar 

  • Cohen, G., Dembiec, D. and Marcus J. 1970. Measurement of catalase activity in tissue extracts. Anal. Biochem. 34: 30–38.

    Google Scholar 

  • Darr, D. and Fridovich, I. 1995. Adaptation to oxidative stress in young, but not in mature or old,Caenorhabditis elegans. Free Radic. Biol. Med. 18: 195–201.

    Google Scholar 

  • Dutta, H. 1994. Growth in fishes. Gerontology 40: 97–112.

    Google Scholar 

  • Goss, R. J. 1994. Why study ageing in cold-blooded vertebrates? Gerontology 40: 65–69.

    Google Scholar 

  • Griffith, O. W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106: 207–212.

    Google Scholar 

  • Habig, W. H., Papst, M. J. and Jakoby, W. B. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130–7139.

    Google Scholar 

  • Harman, D. 1956. Ageing: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298–300.

    Google Scholar 

  • Hasspieler, B. M., Behar, J. V. and Di Giulio, R. T. 1994a. Glutathione-dependent defense in channel catfish (Ictalurus punctatus) and brown bullhead (Ameiurus nebulosus). Ecotoxicol. Eviron. Saf. 28: 82–90.

    Google Scholar 

  • Hasspieler, B. M., Behar, J. V., Carlson, D. B., Watson, D. E. and Di Giulio, R. T. 1994b. Susceptibility of channel catfish (Ictalurus punctatus) and brown bullhead (Ameiurus nebulosus) to oxidative stress: a comparative study. Aquat. Toxicol. 28: 53–64.

    Google Scholar 

  • Hermes-Lima, M., Willmore, W. G. and Storey, K. B. 1995. Quantification of lipid peroxidation in tissue extracts based on Fe(II)xylenol orange complex formation. Free Radic. Biol. Med. 19: 271–280.

    Google Scholar 

  • He, P., Yamaoka-Koseki, S. and Yasumoto, K. 1994. Age-related changes in glutathione concentration, glutahione peroxidase, glutathione-S-transferase, and superoxide dismutase activities in senescence accelerated mice. BioSci. Biotechnol. Biochem. 56: 1037–1040.

    Google Scholar 

  • Kitani, K. 1994. Aging and the liver: functional aspects. Arch. Gerontol. Geriatr. 19: 145–158.

    Google Scholar 

  • Liu, J. and Mori, A. 1993. Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech. Ageing Dev. 71: 23–30.

    Google Scholar 

  • Lowry, O. H., Roseborough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Meister, A. 1991. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmac. Ther. 51: 155–194.

    Google Scholar 

  • Otto, D. M. E., Lindström-Seppä, P. and Sen, C. K. 1994. Cytochrome P450 dependent enzymes and antioxidant mediated responses in rainbow trout exposed to contaminated sediments. Ecotox. Environ. Saf. 27: 265–280.

    Google Scholar 

  • Otto, D. M. E. and Moon, T. W. 1995. 3, 3′, 4, 4′ Tetrachlorobiphenyl effects on antioxidant enzymes and glutathione status in different tissues of rainbow trout. Pharmacol. Toxicol. 77: 281–287.

    Google Scholar 

  • Palace, V. P., Majewski, H. S. and Klaverkamp, J. F. 1993. Interactions among antioxidant defenses in liver of rainbow trout (Oncorhynchus mykiss) exposed to cadmium. Can. J. Fish. Aquat. Sci. 50: 156–162.

    Google Scholar 

  • Patnaik, B. K. 1994. Ageing in reptiles. Gerontology 40: 200–220.

    Google Scholar 

  • Patnaik, B. K., Mahapatro, N. and Jena, B. S. 1994. Ageing in fishes. Gerontology 40: 113–132.

    Google Scholar 

  • Rikans, L. E., Snowden, C. D. and Moore, D. R. 1992. Effect of aging on enzymatic antioxidant defenses in rat liver mitochondria. Gerontology 38: 133–138.

    Google Scholar 

  • Sawada, M., Sester, U. and Carlson, J. C. 1993. Changes in superoxide radical formation, lipid peroxidation, membrane fluidity and cathepsin B activity in aging and spawning male chinook salmon (Oncorhynchus tschawytscha). Mech. Ageing Dev. 69: 137–147.

    Google Scholar 

  • Sen, C.K., Marin, E., Kretschmar, M., and Hänninen, O. 1992. Skeletal muscle and liver glutathione homeostasis in response to training exercise and immobilization. J. Appl. Physiol. 73: 1265–1272.

    Google Scholar 

  • Sohal, R. S. and Allen, R. G. 1986. Relationship between oxygen metabolism, aging and development. Adv. Free Radic. Biol. Med. 2: 117–160.

    Google Scholar 

  • Sohal, R. S., Ku, H.-K., Agarwal, S., Forster, M. J. and Lal, H.. 1994. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 74: 121–133.

    Google Scholar 

  • Stio, M., Iantomasi, T., Favilli, F., Marraccinim, P., Lunghi, B., Vincenzini, M. T. and Treves, C. 1994. Glutathione metabolism in heart and liver of the aging rat. Biochem. Cell Biol. 72: 58–61.

    Google Scholar 

  • Tappel, A. L. 1978. Glutathione peroxidase and hydroperoxides. Methods Enzymol. 52: 506–513.

    Google Scholar 

  • Tate, S. S. and Meister, A. 1985. γ-glutamyl transpeptidase from kidney. Methods Enzymol. 113: 400–419.

    Google Scholar 

  • Véricel, E., Narce, M., Ulman, L., Poisson, J.-P. and Lagarde, M. 1994. Age-related changes in antioxidant defence mechanisms and peroxidation in isolated hepatocytes from spontaneously hypertensive and normotensive rats. Mol. Cell Biochem. 132: 25–29.

    Google Scholar 

  • Warner, H. R., 1994. Superoxide dismutase, aging, and degenerative disease. Free Radic. Biol. Med. 17: 249–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto, D.M.E., Moon, T.W. Endogenous antioxidant systems of two teleost fish, the rainbow trout and the black bullhead, and the effect of age. Fish Physiol Biochem 15, 349–358 (1996). https://doi.org/10.1007/BF02112362

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02112362

Keywords