Skip to main content
Log in

Decoupling of thebc1 complex inS. cerevisiae; point mutations affecting the cytochromeb gene bring new information about the structural aspect of the proton translocation

  • Original Article
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Four mutations in the mitochondrial cytochromeb ofS. cerevisiae have been characterized with respect to growth capacities, catalytic properties, ATP/2e ratio, and transmembrane potential. The respiratory-deficient mutant G137E and the three pseudo-wild type revertants E137 + I147F, E137 + C133S, and E137 + N256K were described previously (Tron and Lemesle-Meunier, 1990; Di Ragoet al., 1990a). The mutant G137E is unable to grow on respiratory substrates but its electron transfer activity is partly conserved and totally inhibited by antimycin A. The secondary mutations restore the respiratory growth at variable degree, with a phosphorylation efficiency of 12–42% as regards the parental wild type strain, and result in a slight increase in the various electron transfer activities at the level of the whole respiratory chain. The catalytic efficiency for ubiquinol was slightly (G137E) or not affected (E137 + I147F, E137 + C133S, and E137 + N256K) in these mutants. Mutation G137E induces a decrease in the ATP/2e ratio (50% of the W.T. value) and transmembrane potential (60% of the W.T. value) at thebc1 level, whereas the energetic capacity of the cytochrome oxidase is conserved. Secondary mutations I147F, C133S, and N256K partly restore the ATP/ 2e ratio and the transmembrane potential at thebc1 complex level. The results suggest that a partial decoupling of thebc1 complex is induced by the cytochromeb point mutation G137E. In the framework of the protonmotive Q cycle, this decoupling can be explained by the existence of a proton wire connecting centers P and N in the wild typebc1 complex which may be amplified or uncovered by the G137E mutation when the bc1 complex is functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beattie, D. S. (1993).Eur. J. Biochem. 25, 233–244.

    Google Scholar 

  • Beattie, D. S., and Clejan, L. (1982).FEBS Lett. 149, 245–248.

    Article  PubMed  Google Scholar 

  • Beattie, D. S., and Marcelo-Baciu, R. M. (1991).J. Bioenerg. Biomembr. 23, 665–679.

    Article  PubMed  Google Scholar 

  • Beattie, D. S., and Villalobo, A. (1982).J. Biol. Chem. 256, 14745–14752.

    Google Scholar 

  • Beattie, D. S., Clejan, L., and Bosch, C. G. (1984).J. Biol. Chem. 259, 10526–10532.

    PubMed  Google Scholar 

  • Brandt, U., and Trumpower, B. (1994).Crit. Rev. Biochem. Mol. Biol. 29, 165–197.

    PubMed  Google Scholar 

  • Brandt, U., and von Jagow, G. (1991).Eur. J. Biochem. 195, 163–170.

    Article  PubMed  Google Scholar 

  • Brasseur, R. (1988).J. Biol. Chem. 263, 12571–12575.

    PubMed  Google Scholar 

  • Bruel, C., and Lemesle-Meunier, D. (1993).Biochem. Soc. Trans. 22, 61S.

    Google Scholar 

  • Chevillotte-Brivet, P., and Meunier-Lemesle, D. (1980).Eur. J. Biochem. 111, 161–169.

    PubMed  Google Scholar 

  • Clejan, L., and Beattie, D. S. (1983).J. Biol. Chem. 258, 14271–14275.

    PubMed  Google Scholar 

  • Coppée, J.-Y., Brasseur, G., Brivet-Chevillotte, P., and Colson, A.-M. (1994).J. Biol. Chem. 269, 4221–4226.

    PubMed  Google Scholar 

  • Crofts, A. R. (1985). InThe Enzymes of Biological Membranes (Martonosi, A., ed), Plenum Press, New York, pp. 347–382.

    Google Scholar 

  • Crofts, A. R., and Wraight (1983).Biochim. Biophys. Acta 726, 149–185.

    Google Scholar 

  • Crofts, A. R., Robinson, H., Andrews, K., Doren, S. V., and Berry, E. (1987). InCytochrome Systems (Papa, S., Chance, B., and Ernster, L., eds.) Plenum Press, New York, pp. 617–624.

    Google Scholar 

  • Crofts, A., Hacker, B., Barquera, B., Yun, C.-H., and Gennis, R. (1992).Biochim. Biophys. Acta 1101, 162–165.

    PubMed  Google Scholar 

  • degli Esposti, M. (1983).Biochim. Biophys. Acta 725, 349–360.

    PubMed  Google Scholar 

  • degli Esposti, M., and Lenaz, G. (1991).Arch. Biochem. Biophys. 289, 303–312.

    Article  PubMed  Google Scholar 

  • degli Esposti, M., Vries, S. D., Crimi, M., Ghelli, A., Patarnello, T., and Meyer, A. (1993).Biochim. Biophys. Acta 1143, 243–271.

    PubMed  Google Scholar 

  • di Rago, J.-P., Netter, P., and Slonimski, P. P. (1990a).J. Biol. Chem. 265, 3332–3339.

    PubMed  Google Scholar 

  • di Rago, J.-P., Netter, P., and Slonimski, P. P. (1990b).J. Biol. Chem. 265, 15750–15757.

    PubMed  Google Scholar 

  • Emaus, R. K., Grunwald, R., and Lemasters, J. L. (1986).Biochim. Biophys. Acta 850, 426–448.

    Google Scholar 

  • Giessler, A., Geier, B., di Rago, J.-P., Slonimski, P. P., and von Jagow, G. (1994).Eur. J. Biochem. 222, 147–154.

    Article  PubMed  Google Scholar 

  • Guérin, B., Labbe, P., and Somlo, M. (1979).Methods Enzymol. 55, 149–159.

    PubMed  Google Scholar 

  • Kotylak, Z., and Slonimski, P. P. (1977). InMitochondria: Genetics and Biogenesis of Mitochondria (Bandlow, W., Schweyen, R. J., Wolf, K., and Kaudewitz, F., eds.), Walter de Gruyter, Berlin, pp. 161–172.

    Google Scholar 

  • Kovac, L., Lachowicz, T. M., and Slonimski, P. P. (1967).Science 158, 1564–1567.

    PubMed  Google Scholar 

  • Lemesle-Meunier, D., Brivet-Chevillotte, P., di Rago, J. P., Slonimski, P. P., Bruel, C., Tron, T., and Forget, N. (1993).J. Biol. Chem. 268, 15626–15632.

    PubMed  Google Scholar 

  • Link, T. A., Haase, U., Brandt, U., and von Jagow, G. (1993).J. Bioenerg. Biomembr. 25, 221–232.

    Article  PubMed  Google Scholar 

  • Meunier-Lemesle, D., Chevillotte-Brivet, P., and Pajot, P. (1980).Eur. J. Biochem. 111, 151–160.

    PubMed  Google Scholar 

  • Miki, T., Miki, M., and Orii, Y. (1994).J. Biol. Chem. 269, 1827–1833.

    PubMed  Google Scholar 

  • Mitchell, P. (1975).FEBS Lett. 59, 137–139.

    Article  PubMed  Google Scholar 

  • Mitchell, P. (1976).J. Theor. Biol. 62, 327–367.

    Article  PubMed  Google Scholar 

  • Murphy, M. P. (1989).Biochim. Biophys. Acta 977, 123–141.

    PubMed  Google Scholar 

  • Nagle, J. F., and Morowitz, H. J. (1978).Proc. Natl. Acad. Sci. USA 75, 298–302.

    PubMed  Google Scholar 

  • Nagle, J. F., and Tristram-Nagle, S. (1983).J. Membr. Biol. 74, 1–14.

    Article  PubMed  Google Scholar 

  • Ohnishi, T., Kawaguchi, K., and Hagihara, B. (1966).J. Biol. Chem. 241, 1797–1807.

    PubMed  Google Scholar 

  • Onsager, L. (1969).Science 166, 1359–1364.

    Google Scholar 

  • Ouhabi, R., Rigoulet, M., and Guerin, B. (1989).FEBS Lett. 254, 199–202.

    Article  Google Scholar 

  • Rao, J. K. M., and Argos, P. (1986).Biochim. Biophys. Acta 869, 197–214.

    PubMed  Google Scholar 

  • Rothschild, K. J. (1992).J. Bioenerg. Biomembr. 1, 147–167.

    Article  Google Scholar 

  • Speck, S. H., and Margoliash, E. (1984).J. Biol. Chem. 259, 1064–1072.

    PubMed  Google Scholar 

  • Sujino, Y., and Miyoshi, Y. (1964).J. Biol. Chem. 239, 2360–2364.

    PubMed  Google Scholar 

  • Tron, T., and Lemesle-Meunier, D. (1990).Curr. Genet. 18, 413–419.

    Article  PubMed  Google Scholar 

  • Trumpower, B. L. (1990a).J. Biol. Chem. 265, 11409–11412.

    PubMed  Google Scholar 

  • Trumpower, B. L. (1990b).Microbiol. Rev. 54, 101–129.

    PubMed  Google Scholar 

  • Wang, Y, and Beattie, D. S. (1991).Arch. Biochem. Biophys. 291, 363–370.

    Article  PubMed  Google Scholar 

  • Woodward, C., Simon, I., and Tuchsen, E. (1982).Mol. Cell. Biochem. 48, 135–160.

    Article  PubMed  Google Scholar 

  • Yang, M., and Trumpower, B. L. (1986).J. Biol. Chem. 261, 12282–12289.

    PubMed  Google Scholar 

  • Yang, M., and Trumpower, B. L. (1988).J. Biol. Chem. 263, 11962–11970.

    PubMed  Google Scholar 

  • Yun, C.-H., Wang, Z., Crofts, A. R., and Gennis, R. B. (1992).J. Biol. Chem. 267, 5901–5909.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruel, C., Manon, S., Guérin, M. et al. Decoupling of thebc1 complex inS. cerevisiae; point mutations affecting the cytochromeb gene bring new information about the structural aspect of the proton translocation. J Bioenerg Biomembr 27, 527–539 (1995). https://doi.org/10.1007/BF02110192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110192

Key words

Navigation