Skip to main content
Log in

Phase transition in continuum Potts models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish phase transitions for a class of continuum multi-type particle systems with finite range repulsive pair interaction between particles of different type. This proves an old conjecture of Lebowitz and Lieb. A phase transition still occurs when we allow a background pair interaction (between all particles) which is superstable and has sufficiently short range of repulsion. Our approach involves a random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. In the course of our argument, we establish the existence of a percolation transition for Gibbsian particle systems with random edges between the particles, and also give an alternative proof for the existence of Gibbs measures with supperstable interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bollobas, B. (1985):Random graphs, London etc.: Academic Press

    Google Scholar 

  2. Bricmont, J., Kuroda, K., and Lebowitz, J.L. (1984): The structure of Gibbs states and coexistence for non-symmetric continuum Widom-Rowlinson models.Z. Wahrscheinlichkeitstheorie verw. Geb. 67, 121–138

    Article  Google Scholar 

  3. Chayes, J.T., Chayes, L. and Kotecky, R. (1995): The analysis of the Widom-Rowlinson model by stochastic geometric methods.Commun. Math. Phys. 172, 551–569

    Google Scholar 

  4. Dobrushin, R.L. (1970): Prescribing a system of random variables by conditional distributions.Th. Probab. Appl. 15, 458–486

    Article  Google Scholar 

  5. Dobrushin, R.L. (1970): Gibbsian random fields for particles without hard core.Theor. Math. Phys. 4, 705–719

    Article  Google Scholar 

  6. Dobrushin, R.L., and Minlos, R.A. (1967): Existence and continuity of pressure in classical statistical physics.Th. Probab. Appl. 12, 535–559

    Article  Google Scholar 

  7. Edwards, R.G. and Sokal, A.D. (1988): Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm.Phys. Rev. D38, 2009–2012

    Article  Google Scholar 

  8. Fortuin, C.M. and Kasteleyn, P.W. (1972): On the random-cluster model. I.Introduction and relation to other models.Physica 57, 536–564

    Article  Google Scholar 

  9. Georgii, H.-O. (1988):Gibbs Measures and Phase Transitions. New York: de Gruyter

    Google Scholar 

  10. Georgii, H.-O. (1994): Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction.Probab. Th. Rel. Fields 99, 171–195

    Article  Google Scholar 

  11. Georgii, H.-O.. (1995): The equivalence of ensembles for classical systems of particles.J. Statist. Phys. 80, 1341–1378

    Google Scholar 

  12. Georgii, H.-O. and Küneth, T. (1995) Stochastic comparison of point random fields. Preprint

  13. Georgii, H.-O. and Zessin, H. (1993): Large deviations and the maximum entropy principle for marked point random fields.Probab. Th. Rel. Fields 96, 177–204

    Article  Google Scholar 

  14. Giacomin, G., Lebowitz, J.L. and Maes, C. (1995): Agreement percolation and phase coexistence in some Gibbs systems.J. Statist. Phys. 80, 1379–1403

    Google Scholar 

  15. Given, J.A. and Stell, G. (1990): The Kirkwood-Salsburg equations for continuum percolation.J. Statist, Phys. 59, 981–1018

    Google Scholar 

  16. Grimmett, G. (1994): Percolative problems. In:Probability and Phase Transition (ed. G. Grimmett), Dordrecht: Kluwer, pp. 69–86

    Google Scholar 

  17. Israel, R.B. (1979):Convexity in the Theory of Lattice Gases. Princeton, NJ: Princeton University Press

    Google Scholar 

  18. Johansson, K. (1991): Separation of phases at low temperatures in a one-dimensional continuous gas.Commun. Math. Phys. 141, 259–278

    Article  Google Scholar 

  19. Johansson, K. (1995): On separation of phases in one-dimensional gases.Commun. Math. Phys. 169, 521–561

    Article  Google Scholar 

  20. Kallenberg, O. (1983):Random measures. 3rd edition. Berlin: Akademie Verlag

    Google Scholar 

  21. Kesten, H. (1982):Percolation Theory for Mathematicians. Boston etc.: Birkhäuser

    Google Scholar 

  22. Klein, W. (1982): Potts-model formulation of continuum percolation.Phys. Rev. B 26, 2677–2678

    Article  Google Scholar 

  23. Lebowitz, J.L. and Lieb, E.H. (1972): Phase transition in a continuum classical system with finite interactions.Phys. Lett. 39A, 98–100

    Google Scholar 

  24. Matthes, K., Kerstan, J. and Mecke, J. (1978):Infinitely Divisible Point Processes. Chichester: Wiley

    Google Scholar 

  25. Meester, R. and Roy, R. (1996):Continuum Percolation. Cambridge: Cambridge University Press

    Google Scholar 

  26. Meester, R. and Steif, J. (1994): Personal communication

  27. Minlos, R.A. (1967): Limiting Gibbs distribution.Funct. Anal. Appl. 1, 140–150&206–217

    Article  Google Scholar 

  28. Penrose, M.D. (1991): On a continuum percolation model.Adv. Appl. Probab. 23, 536–556

    Google Scholar 

  29. Preston, C.J. (1977): Spatial birth-and-death processes.Bull. Int. Statist. Inst. 46(2), 371–391

    Google Scholar 

  30. Ruelle, D. (1970): Superstable interactions in classical statistical mechanics.Commun. Math. Phys. 18, 127–159

    Article  Google Scholar 

  31. Ruelle, D. (1971): Existence of a phase transition in a continuous classical system.Phys. Rev. Lett. 27, 1040–1041

    Article  Google Scholar 

  32. Widom, B. and Rowlinson, J.S. (1970): New model for the study of liquid-vapor phase transition.J. Chem. Phys. 52, 1670–1684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ya.G. Sinai

To the memory of Roland Dobrushin

Research partially supported by the Isaac Newton Institute Cambridge.

Research supported by the Swedish Natural Science Research Council and the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgii, H.O., Häggström, O. Phase transition in continuum Potts models. Commun.Math. Phys. 181, 507–528 (1996). https://doi.org/10.1007/BF02101013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101013

Keywords

Navigation