Skip to main content
Log in

Formation and filtration characteristics of solids generated in a high level liquid waste treatment process

I. Solids formation behavior from simulated high level liquid waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The solids formation behavior in a simulated high level liquid waste (HLLW) was experimentally examined, when the simulated HLLW was treated in the ordinary way of actual HLLW treatment process. Solids formation conditions and mechanism were closely discussed. The solids formation during a concentration step can be explained by considering the formation of zirconium phosphate, phosphomolybdic acid and precipitation of strontium and barium nitrates and their solubilities. For the solids formation during the denitration step, at least four courses were observed; formation of an undissolved material by a chemical reaction with each other of solute elements (zirconium, molybdenum, tellurium) precipitation by reduction (platinum group metals) formation of hydroxide or carbonate compounds (chromium, neodymium, iron nickel, strontium, barium) and a physical adsorption to stable solid such as zirconium molybdate (nickel, strontium, barium).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purex Technical Manual, HW-31000 DEL, Hanford Atomic Products Operation, Mar. 1955.

  2. Y. Kondo, M. Kubota, J. Nucl. Sci. Technol., 29 (1992) 140.

    Google Scholar 

  3. Y. Kondo, M. Matsumura, M. Kubota, J. At. En. Soc. Japan, 35 (1993) 317.

    Google Scholar 

  4. Y. Kondo, M. Matsumura, M. Kubota, J. Radioanal. Nucl. Chem., 177 (1994) 301.

    Google Scholar 

  5. Y. Kondo, M. Matsumura, M. Kubota, J. Radioanal. Nucl. Chem., 177 (1994) 310.

    Google Scholar 

  6. Y. Kondo, J. Radioanal. Nucl. Chem., 191 (1995) 115.

    Google Scholar 

  7. P. A. Anderson, Nucl. Technol., 47 (1980) 173.

    Google Scholar 

  8. D. O. Campbell, S. R. Buxton, Trans. Am. Nucl. Soc., 24 (1976) 232.

    Google Scholar 

  9. M. H. Lloyd, Trans. Am. Nucl. Soc., 24 (1976) 233.

    Google Scholar 

  10. M. H. Lloyd, Proc. Topical Meeting on the Plutonium Fuel Cycle, Bal Harbour, Florida, 1977.

  11. M. Kubota, T. Fukase, J. Nucl. Sci. Technol., 17 (1980) 783.

    Google Scholar 

  12. B. S. M. Rao, E. Geniner, H. G. Muller, J. Reinhardt, D. Steinert, H. J. Ache, Microprobe Spectroscopy, 40 (1986) 330.

    Google Scholar 

  13. B. S. M. Rao, E. Gentner, J. Reinhardt, D. Steinert, H. J. Ache, J. Nucl. Material, 170 (1990) 39.

    Google Scholar 

  14. S. Music, M. Ristic, S. Popovic, J. Radioanal. Nucl. Chem., 134 (1989) 353.

    Google Scholar 

  15. A. Linz, Ind. Eng. Chem. Anal. Ed., 15 (1942) 459.

    Google Scholar 

  16. T. Izumida, F. Kawamura, J. Nucl. Sci. Technol., 27 (1990) 267.

    Google Scholar 

  17. W. F. Linke, Solubilities Inorganic and Metal-Organic Compounds, American Chemical Society, 1965.

  18. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, Pergamon Press, 1966.

  19. A. Clearfield, R. H. Blessing, J. Inorg. Nucl. Chem., 34 (1972) 2643.

    Google Scholar 

  20. E. Montignie, Bull. Soc. Chim., 6 (1939) 672, 13 (1946) 176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, Y., Kubota, M. Formation and filtration characteristics of solids generated in a high level liquid waste treatment process. J Radioanal Nucl Chem 221, 45–52 (1997). https://doi.org/10.1007/BF02035241

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02035241

Keywords

Navigation