Skip to main content
Log in

Ecological aspects of microorganisms inhabiting uranium mill tailings

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques.Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereasBacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beveridge TJ, Koval SF (1981) Binding of metals to cell envelopes ofEscherichia coli K-12. Appl Environ Microbiol 42(2):325–335

    PubMed  Google Scholar 

  2. Beveridge TJ, Murray RG (1976) Uptake and retention of metals by cell walls ofBacillus subtilis. J Bacteriol 127(3):1502–1518

    PubMed  Google Scholar 

  3. Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell walls ofBacillus subtilis. J Bacteriol 141(2):876–887

    PubMed  Google Scholar 

  4. Boylen CW (1973) Survival ofArthrobacter crystallopoietes during prolonged periods of extreme desiccation. J Bacteriol 113(1):33–37

    PubMed  Google Scholar 

  5. Boylen CW, Mulks MH (1978) The survival of coryneform bacteria during periods of prolonged nutrient starvation. J Gen Microbiol 105:323–334

    Google Scholar 

  6. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44(4):992–993

    PubMed  Google Scholar 

  7. Crock JG, Lichte FE, Briggs PH (1983) Determination of elements in National Bureau of Standards' geological reference materials SRM 278 obsidian and SRM 688 basalt by inductively coupled argon plasma-atomic emission spectroscopy. Geostand Newsl 7(2):335–340

    Google Scholar 

  8. Cypionka H, Widdell F, Pfennig N (1985) Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Ecol 31:39–45

    Google Scholar 

  9. DeHaan H (1977) Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (the Netherlands). Limnol Oceanogr 22(1):38–44

    Google Scholar 

  10. Engleman EE, Jackson LL, Norton DR (1985) Determination of carbonate carbon in geologic materials by coulometric titration. Chem Geol 53:125–128

    Google Scholar 

  11. Gottschal JC, Szewzyk R (1985) Growth of a facultative anaerobe under oxygen-limiting conditions in pure culture and in co-culture with a sulfate-reducing bacterium. FEMS Microbiol Ecol 31(3):159–170

    Google Scholar 

  12. Guonot AM (1967) Role biologique desArthrobacter dans les limons souterrains. Annales de L'Institut Pasteur 113:923–945

    PubMed  Google Scholar 

  13. Hardy JA, Hamilton WA (1981) The oxygen tolerance of sulfate-reducing bacteria isolated from North Sea waters. Current Microbiol 6:259–262

    Google Scholar 

  14. Horvath RS, Alexander M (1970) Cometabolism of m-chlorobenzoate by anArthrobacter. Appl Microbiol 20:254–258

    PubMed  Google Scholar 

  15. Hutchinson M, Johnstone KJ, White B (1966) Taxonomy of the acidophilicThiobacilli. J Gen Microbiol 44(3):373–381

    PubMed  Google Scholar 

  16. Jorgensen BB (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar Biol 41:7–17

    Google Scholar 

  17. Kalin M, Stokes PM (1981) Macrofungi on uranium mill tailings—associations and metal content. Sci Total Environ 19:83–94

    Google Scholar 

  18. Keddie RM, Jones D (1981) Saprophytic, aerobic coryneform bacteria. In: Starr MP, Stolp H, Truper HG, Balows A, Schegel HG (eds) The prokaryotes. Springer-Verlag, New York, pp 1838–1878

    Google Scholar 

  19. Klein DA, Davis JA, Casida LE (1968) Oxidation of n-alkanes to ketones by anArthrobacter species. Antonie Van Leeuwenhoek 34:495–503

    PubMed  Google Scholar 

  20. Labeda DP, Liu KC, Casida LE (1976) Colonization of soil byArthrobacter andPseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy. Appl Environ Microbiol 31(4):551–561

    PubMed  Google Scholar 

  21. Landa ER, Miller CL, Updegraff DM (1986) Leaching of226Ra from uranium mill tailings by sulfate-reducing bacteria. Health Phys 51 4:509–518

    PubMed  Google Scholar 

  22. Loring DH (1978) Industrial and natural inputs, levels, behavior, and dynamics of biologically toxic heavy metals in the Saguenay Fjord, Gulf of St. Lawrence, Canada. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology 3: methods, metals and assessment. Ann Arbor Science Publishers, Inc, Ann Arbor, Michigan, pp 1025–1040

    Google Scholar 

  23. Markos G, Bush KJ (1982) Geochemical processes in uranium mill tailings and their relationship to contamination in management of wastes from uranium mining and milling. Proc Symp, Albuquerque, May 1982. Int Atomic Energy Agency, Vienna, pp 231–246

    Google Scholar 

  24. Mathur SP, Paul EA (1967) Microbial utilization of soil humic acids. Can J Microbiol 13: 573–580

    PubMed  Google Scholar 

  25. McCready RG, Bland CJ, Gonzales DE (1980) Preliminary studies on the chemical, physical, and biological stability of Ba/RaSO4 precipitates. Hydrometallurgy 5:109–116

    Google Scholar 

  26. Merritt RC (1971) Active uranium plants in the United States. In: Merritt RC (ed) The extractive metallurgy of uranium. Colorado School of Mines Research Institute, Golden, Colorado, pp 400–511

    Google Scholar 

  27. Mulder EG, Antheunisse J (1963) Morphologie, physiologie et ecologie desArthrobacter. Ann Inst Pasteur, Paris, 105:46–74

    Google Scholar 

  28. Novick RP, Roth C (1968) Plasmid-linked resistance to inorganic salts inStaphylococcus aureus. J Bacteriol 95:1335–1342

    PubMed  Google Scholar 

  29. Otton JA, Zielinski RA (1985) Movement and concentration of uranium in young, organicrich sediments, Stevens County, Washington. In: Concentration mechanisms of uranium in geologic environments. Int Meeting October 2–5, 1985, French Society of Mineralogy and Crystallography, Center for Research on the Geology of Uranium, Nancy, France, pp 49–52

    Google Scholar 

  30. Pacific Northwest Laboratory (1984) Nuclear fact handbook, radioactive waste management and the nuclear fuel cycle. 5(2,3):188

    Google Scholar 

  31. Perez J, Torma AE, Itzkovitch IJ (1983) Effects ofThiobacillus ferrooxidans on bariumradium sulfate in uranium mill tailings. In: Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, Cagliari, Italy, pp 643–656

    Google Scholar 

  32. Postgate JR (1979) Cultivation and growth. In: Postgate JR (ed) The sulphate-reducing bacteria. Cambridge University Press, Cambridge, pp 24–40

    Google Scholar 

  33. Reardon EJ, Poscente PJ (1984) A study of gas compositions in sawmill waste deposits: evaluation of the use of wood waste in close-out of pyritic tailings, Reclamation and Revegetation Research. 3:109–128

    Google Scholar 

  34. Robinson JB, Salonius PO, Chase FE (1965) A note on the differential response ofArthrobacter spp andPseudomonas spp. to drying in soil. Can J Microbiol 11:746–748

    PubMed  Google Scholar 

  35. Skougstad MW, Fishman MJ, Freidman LC, Erdmann DE, Duncan SS (eds) (1979) Methods for determination of inorganic substances in water and fluvial sediments: techniques of water-resources investigations of the United States Geological Survey. Ch Al, Book 5:201–203

  36. Smyk B, Ettlinger L (1963) Recherches sur Quelques Especes D'Arthrobacter Fixatrices D'Azote Isolees Des Roches Karstiques Alpines. Ann Inst Pasteur, Paris, 105:341–348

    Google Scholar 

  37. Stevenson IL (1967) Utilization of aromatic hydrocarbons byArthrobacter spp. Can J Microbiol 13:205–211

    PubMed  Google Scholar 

  38. Strandberg GW, Shumate SE, Parrott JR (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl Environ Microbiol 41(1):237–245

    Google Scholar 

  39. Updegraff DM, Douros JD (1972) The relationship of microorganisms to uranium deposits. Dev Ind Microbiol 13:76–90

    Google Scholar 

  40. Yamada Y, Motoi H, Kinoshita S, Takada N, Okada H (1975) Oxidative degradation of squalene byArthrobacter species. Appl Microbiol 29(3):400–404

    PubMed  Google Scholar 

  41. Yang IC (1980) Improved method for the determination of dissolved radium in natural water and uranium mill process waste water. Health Phys 39:1059

    Google Scholar 

  42. Zajic JE (1969) Metal-containing metabolites. In: Zajic JE (ed) Microbial biogeochemistry. Academic Press, New York, pp 289–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, C.L., Landa, E.R. & Updegraff, D.M. Ecological aspects of microorganisms inhabiting uranium mill tailings. Microb Ecol 14, 141–155 (1987). https://doi.org/10.1007/BF02013019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02013019

Keywords

Navigation