Skip to main content
Log in

Some physiological aspects of the autecology of the suspension-feeding protozoanTetrahymena pyriformis

  • Published:
Microbial Ecology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Feeding, growth, and reproductive responses of the suspension-feeding protozoanTetrahymena pyriformis to shifts up or down of the density of its bacterial food were observed. The rates of feeding, growth, and reproduction were determined by measuring the rates of uptake of viable bacterial cells, of change of mean volume of the protozoan cells, and of change of number of protozoan cells, respectively. The effects of the nutritional status of the protozoans at the time of shifting were observed also. Results are interpreted in terms of the limited polymorphism exhibited in the life cycle of this organism. Responses in all cases seem to reflect a strategy for exploiting a patchy, transient environment, a conclusion already reached by several earlier investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander M (1981) Why microbial predators and parasites do not eliminate their prey and hosts. Ann Rev Microbiol 35:113–133

    Article  Google Scholar 

  2. Ashby RE (1976) Long term variations in a protozoan chemostat culture. J Exp Mar Biol Ecol 24:227–235

    Article  Google Scholar 

  3. Bader FG, Tsuchiya HM, Fredrickson AG (1976) Grazing of ciliates on blue-green algae. Effects of ciliate encystment and related phenomena. Biotechnol Bioeng 18:311–332

    Article  Google Scholar 

  4. Barna I, Weis DS (1973) The utilization of bacteria as food forParamecium bursaria. Trans Am Microsc Soc 92:434–440

    PubMed  Google Scholar 

  5. Bazin MJ, Rapa V, Saunders PT (1974) The integration of theory and experiment in the study of predator-prey dynamics. In: Usher MB, Williamson MH (eds) Ecological stability. Chapman and Hall, London, pp 159–164

    Google Scholar 

  6. Berk SG, Colwell RR, Small EB (1976) A study of feeding responses to bacterial prey by estuarine ciliates. Trans Am Microsc Soc 95:514–520

    Google Scholar 

  7. Butterfield CT, Purdy WC (1931) Some interrelationships of plankton and bacteria in natural purification of polluted water. Ind Eng Chem 23:213–218

    Article  Google Scholar 

  8. Cameron IL (1965) Macromolecular events leading to cell division inTetrahymena pyriformis after removal and replacement of required pyrimidines. J Cell Biol 25 (Part 2):9–18

    Article  PubMed  Google Scholar 

  9. Canale RP, Lustig TD, Kehrberger PM, Salo JE (1973) Experimental and mathematical modeling studies of protozoan predation on bacteria. Biotechnol Bioeng 15:707–728

    Article  Google Scholar 

  10. Chapman-Andresen C, Nilsson JR (1968) On vacuole formation inTetrahymena pyriformis GL. C. r. Trav. Lab. Carlsberg 36:405–432

    PubMed  Google Scholar 

  11. Coleman GS (1964) The metabolism ofEscherichia coli and other bacteria byEntodinium caudatum. J Gen Microbiol 37:209–223

    PubMed  Google Scholar 

  12. Corliss JO (1953) Comparative studies on holotrichous ciliates in theColpidium-Glaucoma-Leucophrys-Tetrahymena group. II. Morphology, life cycles and systematic status of strains in pure culture. Parasitology 43:49–87

    PubMed  Google Scholar 

  13. Curds CR, Bazin MJ (1977) Protozoan predation in batch and continuous culture. Adv Aquatic Microbiol 1:115–176

    Google Scholar 

  14. Curds CR, Cockburn A (1968) Studies on the growth and feeding ofTetrahymena pyriformis in axenic and monoxenic culture. J Gen Microbiol 54:343–358

    PubMed  Google Scholar 

  15. Curds CR, Cockburn A (1971) Continuous monoxenic culture ofTetrahymena pyriformis. J Gen Microbiol 66:95–108

    PubMed  Google Scholar 

  16. Curds CR, Vandyke JM (1966) The feeding habits and growth rates of some fresh water ciliates found in activated sludge. J Appl Ecol 3:127–137

    Google Scholar 

  17. Dent VE, Bazin MJ, Saunders PT (1976) Behaviour ofDictyostelium discoideum amoebae andEscherichia coli grown together in a chemostat culture. Arch Microbiol 109:187–194

    Article  PubMed  Google Scholar 

  18. Dive D (1973) Nutrition holozoique deColpidium campylum. Phenomenes de selection et d'antagonisme avec les bacteries. Water Res 7:695–706

    Article  Google Scholar 

  19. Dive D (1975) Influence de la concentration bacterienne sur la croissance deColpidium campylum. J Protozool 22:545–550

    Google Scholar 

  20. Drake JF, Tsuchiya HM (1976) Predation onEscherichia coli byColpoda steinii. Appl Environ Microbiol 31:870–874

    PubMed  Google Scholar 

  21. Drake JF, Tsuchiya HM (1977) Growth kinetics ofColpoda steinii onEscherichia coli. Appl Environ Microbiol 34:18–22

    PubMed  Google Scholar 

  22. Fenchel T (1980) Suspension feeding in ciliated protozoa: Functional response and particle size selection. Microb Ecol 6:1–11

    Google Scholar 

  23. Fenchel T (1980) Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance. Microb Ecol 6:13–25

    Google Scholar 

  24. Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore, Maryland

    Google Scholar 

  25. Habte M, Alexander M (1978) Protozoan density and the coexistence of protozoan predators and bacterial prey. Ecology 59:140–146

    Google Scholar 

  26. Hamilton RD, Preslan JE (1970) Observations on the continuous culture of a planktonic phagotrophic protozoan. J Exp Mar Biol Ecol 5:94–104

    Article  Google Scholar 

  27. Harding JP (1937) Quantitative studies on the ciliateGlaucoma: I. The regulation of the size and fission rate by the bacterial food supply. J Exp Biol 14:422–430

    Google Scholar 

  28. Harding JP (1937) Quantitative studies on the ciliateGlaucoma: II. The effects of starvation. J Exp Biol 14:431–439

    Google Scholar 

  29. Jost JL, Drake JF, Fredrickson AG, Tsuchiya HM (1973) Interactions ofTetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J Bacteriol 113:834–840

    PubMed  Google Scholar 

  30. Laybourn JEM, Stewart JM (1975) Studies on consumption and growth in the ciliateColpidium campylum Stokes. J Animal Ecol 44:165–174

    Google Scholar 

  31. Luckinbill LS (1973) Coexistence in laboratory populations ofParamecium aurelia and its predatorDidinium nasutum. Ecology 54:1320–1327

    Google Scholar 

  32. Luckinbill LS (1974) The effects of space and enrichment on a predator-prey system. Ecology 55:1142–1147

    Google Scholar 

  33. Luckinbill LS (1979) Regulation, stability, and diversity in a model experimental microcosm. Ecology 60:1098–1102

    Google Scholar 

  34. Proper G, Garver J (1966) Mass culture of the protozoaColpoda steinii. Biotechnol Bioeng 8:287–296

    Article  Google Scholar 

  35. Ratnam DA, Pavlou S, Fredrickson AG (in press) Effects of attachment of bacteria to chemostat walls in a microbial predator-prey relation. Biotechnol Bioeng

  36. Ricketts TR, Rappitt AF (1974) Determination of the volume and surface area ofTetrahymena pyriformis, and their relationship to endocytosis. J. Protozool 21:549–551

    PubMed  Google Scholar 

  37. Salt GW (1967) Predation in a experimental protozoa population (Woodruffia-Paramecium), Ecolog Monogr 37:113–144

    Google Scholar 

  38. Salt GW (1975) Changes in the cell volume ofDidinium nasutum during population increase. J Protozool 22:112–115

    Google Scholar 

  39. Sudo R, Kobayashi K, Aiba S (1975) Some experiments and analysis of a predator-prey model: Interaction betweenColpidium campylum andAlcaligenes faecalis in continuous and mixed culture. Biotechnol Bioeng 17:167–184

    Article  Google Scholar 

  40. Swift ST, Najita IY, Ohtaguchi K, Fredrickson AG (1982) Continuous culture of the ciliateTetrahymena pyriformis onEscherichia coli. Biotechnol Bioeng 24:1953–1964

    Article  Google Scholar 

  41. Taylor WD (1978) Growth responses of ciliate protozoa to the abundance of their bacterial prey. Microb Ecol 4:207–214

    Article  Google Scholar 

  42. Taylor WD, Berger J (1976) Growth ofColpidium campylum in monoxenic batch culture. Can J Zool 54:392–398

    Google Scholar 

  43. Taylor WD, Berger J (1976) Growth responses of cohabiting ciliate protozoa to various prey bacteria. Can J Zool 54:1111–1114

    Google Scholar 

  44. Taylor WD, Gates MA, Berger J (1976) Morphological changes during the growth cycle of axenic and monoxenicTetrahymena pyriformis. Can J Zool 54:2011–2018

    PubMed  Google Scholar 

  45. Tsuchiya HM, Drake JF, Jost JL, Fredrickson AG (1972) Predator-prey interactions ofDictyostelium discoideum andEscherichia coli in continuous culture. J Bacteriol 110:1147–1153

    PubMed  Google Scholar 

  46. van den Ende P (1973) Predator-prey interactions in continuous culture. Science 181:562–564

    Google Scholar 

  47. Villareal E, Canale RP, Akcasu Z (1975) A multigroup model for predator-prey interactions. Biotechnol Bioeng 17:1269–1290

    Article  PubMed  Google Scholar 

  48. Watson PJ, Ohtaguchi K, Fredrickson AG (1981) Kinetics of growth of the ciliateTetrahymena pyriformis onEscherichia coli. J Gen Microbiol 122:323–333

    PubMed  Google Scholar 

  49. Williams FM (1971) Dynamics of microbial populations. In: B. C. Patten (ed.). Systems analysis and simulation in ecology, Vol. 1. Academic Press, New York and London, pp 197–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swift, S.T., Najita, I.Y., Ohtaguchi, K. et al. Some physiological aspects of the autecology of the suspension-feeding protozoanTetrahymena pyriformis . Microb Ecol 8, 201–215 (1982). https://doi.org/10.1007/BF02011425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02011425

Keywords