Skip to main content
Log in

Pathogenesis of diencephalic lesions in an experimental model of Wernicke's encephalopathy

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The relationship of thiamine deficiency to Wernicke's encephalopathy has been well established. The biochemical bases and physiologic mechanisms responsible for the pathologic changes and their selective distribution within the brain remain controversial. The present paper reviews recent biochemical, histopathological and pharmacological evidence of a glutamate-mediated excitotoxic mechanism of neuronal loss in pyrithiamine-induced thiamine deficiency (PTD), a rat model of Wernicke's encephalopathy. A mechanistic model involving the unique combination of thiamine deficiency-induced impairment of energy metabolism, increased release of histamine, and multidirectional glutamate inputs is presented to explain the selective vulnerability of thalamic nuclei to excitotoxic lesions in the PTD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe T., Sugihara H., Nawa H., Shigemoto R., Mizuno N. and Nakanishi S. (1992). Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction.J. Biol. Chem. 267:13361–13368.

    PubMed  Google Scholar 

  • Aikawa H., Watanabe I.S., Furuse T., Iwasaki Y., Satoyoshi E., Sumi T. and Moroji T. (1984). Low energy levels in thiamine-deficient encephalopathy.J. Neuropathol. Exp. Neurol. 43:276–287.

    PubMed  Google Scholar 

  • Aramori I. and Nakanishi S. (1992). Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells.Neuron 8:757–765.

    Article  PubMed  Google Scholar 

  • Armstrong-James M., Ross D.T., Chen F. and Ebner F.F. (1988). The effect of thiamine deficiency on the structure and physiology of the rat forebrain.Metab. Brain Dis. 3:91–124.

    Article  PubMed  Google Scholar 

  • Beal M.F. (1992). Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?Ann. Neurol. 31:119–130.

    Article  PubMed  Google Scholar 

  • Beal M.F., Hyman B.T., and Koroshetz W. (1993). Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?TINS 16:125–131.

    PubMed  Google Scholar 

  • Bekkers J. M. (1993). Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus.Science 261:104–106.

    PubMed  Google Scholar 

  • Bennet C.D., Jones J.H., and Nelson J. (1966). The effects of thiamine deficiency on the metabolism of the brain. 1. Oxidation of various substrates in vitro by the liver and brain of normal and pyrithiamine-fed rats.J. Neurochem. 13:449–459.

    Google Scholar 

  • Blackstone C.D., Moss S.J., Martin L.J., Levey A.I., Price D.L. and Huganir R.L. (1992). Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain.J. Neurochem. 58:1118–1126.

    PubMed  Google Scholar 

  • Blass J.P. (1979). Disorders of pyruvate metabolism.Neurology 29:280–286.

    PubMed  Google Scholar 

  • Butters N. and Cermak L.S. (1980).Alcoholic Korsakoff's Syndrome. New York: Academic Press.

    Google Scholar 

  • Butterworth R.F. (1989). Effects of thiamine deficiency on brain metabolism: Implications for the pathogenesis of the Wernicke-Korsakoff syndrome.Alcohol and Alcoholism. 24:271–279.

    PubMed  Google Scholar 

  • Butterworth R.F., Gaudreau C., Vincelette J., Bourgault A.M., Lamothe F., and Nutini A.M. (1991). Thiamine deficiency and Wernicke's Encephalopathy in AIDS.Metab. Brain Dis. 6:207–212.

    Article  PubMed  Google Scholar 

  • Butterworth R.F., Giguere J.F. and Besnard A.M. (1986). Activities of thiamine-dependent enzymes in two experimental models of thiamine deficiency encephalopathy. 2. α-ketoglutarate dehydrogenase.Neurochem. Res. 11:567–577.

    Article  PubMed  Google Scholar 

  • Calingasan N.Y., Baker H., Sheu K.-F.R. and Gibson G.E. (1994). Distribution of the α-ketoglutarate dehydrogenase complex in rat brain.J. Comp Neurol. 346:461–479.

    Article  PubMed  Google Scholar 

  • Cha J.J.H., Makowiec R.L., Penney J.B. and Young A.B. (1992). Multiple states of rat brain (RS)-α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors as revealed by quantitative autoradiography.Molec. Pharmacol. 41:832–838.

    Google Scholar 

  • Choi D.W. (1992). Excitotoxic cell death.J. Neurobiol. 23:1261–1276.

    Article  PubMed  Google Scholar 

  • Collins G.H. (1967). Glial cell changes in the brain stem of thiamine-deficient rats.Amer. J. Pathol. 50:791–814.

    Google Scholar 

  • Collins G.H. and Converse W.K. (1970). Cerebellar degeneration in thiamine-deficient rats.Amer. J. Pathol. 58:219–233.

    Google Scholar 

  • Collins R.C. and Olney J.W. (1982). Focal cortical seizures cause distant thalamic lesions.Science 218:177–179.

    PubMed  Google Scholar 

  • Dreyfus P.M. and Victor M. (1961). Effects of thiamine deficiency on the central nervous system.Amer. J. Clin. Nutr. 9:414–425.

    PubMed  Google Scholar 

  • Dyckner T., Ek B., Nyhlin H. and Wester P.O. (1985). Aggravation of thiamine deficiency by magnesium depletion.Acta Med. Scand. 218:129–131.

    PubMed  Google Scholar 

  • Elin R.J. (1987). Assessment of magnesium status.Clin. Chem. 33:1965–1970.

    PubMed  Google Scholar 

  • Erbsloh F. and Abel M. (1970).Handbook of Clinical Neurology, North-Holland Publishing Co, Amsterdam 7:558–571.

    Google Scholar 

  • Flink E.B. (1976). Magnesium deficiency and magnesium toxicity in man. In A. Prasad (Editor),Trace Elements in Human Health and Disease. Vol 2. New York, Academic Press.

    Google Scholar 

  • Flink L. (1986). Magnesium deficiency in Alcoholism.Alcoholism: Clin. Exp. Res. 10:590–594.

    Google Scholar 

  • Gibson G., Ksiezak-Reding H., Sheu K.F.R., Mykytyn V. and Blass J.P. (1984). Correlation of enzymatic, metabolic and behavioral deficits in thiamine deficiency and its reversal.Neurochem. Res. 9:803–814.

    Article  PubMed  Google Scholar 

  • Goto I., Nagara H., Tateishi J. and Kuroiwa Y. (1986). Thiamine-deficient encephalopathy in rats: Effects of deficiencies of thiamine and magnesium.Brain Res. 372:31–36.

    Article  PubMed  Google Scholar 

  • Gubler C.J. (1961). Studies on the physiological functions of thiamine. 1. The effects of thiamine deficiency and thiamine antagonists on the oxidation of α-keto acids by rat tissues.J. Biol. Chem. 236:3112–3120.

    PubMed  Google Scholar 

  • Hakim A.M. (1984). The induction and reversibility of cerebral acidosis in thiamine deficiency.Ann. Neurol. 16:673–679.

    Article  PubMed  Google Scholar 

  • Hakim A.M. and Pappius H.M. (1983). Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency.Ann. Neurol. 13:365–375.

    Article  PubMed  Google Scholar 

  • Hazell A.S., Butterworth R.F. and Hakim A.M. (1993). Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency.J. Neurochem. 61:1155–1158.

    PubMed  Google Scholar 

  • Henneberry R.L., Novelli A., Cox J.A., and Lysko P.G. (1989). Neurotoxicity at the NMDA receptor in energy-compromised neurons. An Hypothesis for cell death in aging and disease.Ann. NY Acad. Sci. 568:225–233.

    PubMed  Google Scholar 

  • Ikonomidou C., Price M.T., Mosinger J.L. and Olney J.W. (1989). Hypobaric-ischemic conditions produce glutamate-like cytopathology in infant rat brain.J. Neurosci. 9:1693–1700.

    PubMed  Google Scholar 

  • Inagaki N., Yamatodani A., Ando-Yamamoto M., Tohyama M., Watanabe T. and Wada H. (1988). Organization of histaminergic fibers in the rat brain.J. Comp. Neurol. 273:283–300.

    Article  PubMed  Google Scholar 

  • Irle E. and Markowitsch H.J. (1982). Thiamine deficiency in the cat leads to severe learning deficits and to widespread neuroanatomical damage.Exp. Brain Res. 48:199–208.

    Article  PubMed  Google Scholar 

  • Jellinger K. and Seitelberger F. (1970). Subacute necrotizing encephalomyelopathy. In Mehilmeyer I., Muller A.F., Prader A. and Schoen R. (eds).Ergebuisse Der Innerren Medizin und Kinderkeikunde. Springer-Verlag, Berlin-Heidelberg, New York, pp. 155–219.

    Google Scholar 

  • Kauppinen R.A., McMahon H.T., and Nicholls D.G. (1988). Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia.Neuroscience 27:175–182.

    Article  PubMed  Google Scholar 

  • Langlais P.J. (1992). Role of diencephalic lesions and thiamine deficiency in Korsakoff's amnesia: Insights from animal models. In LR Squire & N. Butters (Eds),Neuropsychology of Memory, New York: The Guilford Press, pp. 440–450.

    Google Scholar 

  • Langlais P.J. and Mair R.G. (1990). Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain.J. Neurosci. 10:1664–1674.

    PubMed  Google Scholar 

  • Langlais P.J. and Savage L.M. (1995). Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex, and white matter.Behav. Brain. Res. (in press).

  • Langlais P.J., Mandel R.J. and Mair R.G. (1992). Diencephalic lesions, learning impairments, and intact retrograde memory following acute thiamine deficiency in the rat.Behav. Brain Res. 48:177–185.

    PubMed  Google Scholar 

  • Langlais P.J. and Zhang S.X. (1993). Extracellular glutamate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801.J. Neurochem. 61:2175–2182.

    PubMed  Google Scholar 

  • Langlais P.J., Zhang S.X., Weilersbacher G., Hough L.B. and Barke K.E. (1994). Histamine-mediated neuronal death in a rat model of Wernicke's Encephalopathy.J. Neurosci. Res. 38:565–574.

    Article  PubMed  Google Scholar 

  • Lowry O.H. and Passonneau J.V. (1964). The relationships between substrates and enzymes of glycolysis in brain.J. Biol. Chem. 239:31–41.

    PubMed  Google Scholar 

  • Mair R.G., Knoth R.L., Rabchenuk S.A. and Langlais P.J. (1991a). Impairment of olfactory, auditory, and spatial serial reversal learning in rats recovered from pyrithiamine-induced thiamine deficiency.Behav. Neurosci. 105:360–374.

    Article  PubMed  Google Scholar 

  • Mair R.G., Otto T.A., Knoth R.L., Rabchenuk S.A. and Langlais P.J. (1991b). An analysis of aversively reinforced learning in rats recovered from pyrithiamine-induced thiamine deficiency.Behav. Neurosci. 105:351–359.

    Article  PubMed  Google Scholar 

  • Martin L.J., Blackstone C.D., Jugani R.L. and Price D.L. (1992). Cellular localization of a metabotropic glutamate receptor in rat brain.Neuron 9:259–270.

    Article  PubMed  Google Scholar 

  • McCandless D.W. and Schenker S. (1968). Encephalopathy of thiamine deficiency: Studies of intracerebral mechanisms.J. Clin. Invest. 47:2268–2280.

    PubMed  Google Scholar 

  • McCormick D.A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex.J. Clin. Neurophysiol. 9:212–223.

    PubMed  Google Scholar 

  • McCormick D.A. and Von Krosigk M. (1992). Corticothalamic activation modulates thalamic firing through glutamate ‘metabotropic’ receptors.Proc. Natl. Acad. Sci. USA 89:2774–2778.

    PubMed  Google Scholar 

  • Morris M.E. (1992). Brain and CSF magnesium concentrations during magnesium deficit in animals and human: Neurological symptoms.Magnesium Res. 5:303–313.

    Google Scholar 

  • Nakanishi H., Kamata O., Ukai K. and Yamamoto K. (1991). Inhibitory effects of NMDA receptor antagonists on hypoxia-induced seizures in dietary Mg2+-deficient mice.Eur. J. Pharmacol. 204:29–34.

    Article  PubMed  Google Scholar 

  • Novelli A., Reilly J.A., Lysko P.G. and Henneberry R.C. (1988). Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced.Brain Res. 451:205–212.

    Article  PubMed  Google Scholar 

  • Olney J.W. (1986). Inciting excitotoxic cytocide among central neurons. In R Schwarcz & Y Ben-Ari (Eds),Excitatory amino acids and Epilepsy. Plenum, NY, pp. 631–645.

    Google Scholar 

  • Olney J.W. (1989). Excitatory amino acids and neuropsychiatric disorders.Biol. Psychiatry 26:505–525.

    Article  PubMed  Google Scholar 

  • Olney J.W. (1971). Glutamate-induced neuronal necrosis in the infant mouse hypothalamus: An electronmicroscopic study.J. Neuropathol. Exp. Neurol. 30:75–90.

    PubMed  Google Scholar 

  • Olney J.W., Sharpe L.G. and Feigin R.D. (1972). Glutamate-induced brain damage in infant primates.J. Neuropathol. Exp. Neurol. 31:464–488.

    PubMed  Google Scholar 

  • Onodera K., Maeyama K. and Watanabe T. (1989). The increase of histamine levels in the amygdala caused by histidine administration and the suppression of muricide in thiamine deficient rats.Agents and Actions 27:120–122.

    PubMed  Google Scholar 

  • Oscar-Berman M., Zola-Morgan S.M., Oberg R.G.E. and Bonner R.T. (1982). Comparative neuropsychology and Korsakoff's syndrome. III: Delayed response, delayed alternation and DRL performance.Neuropsychologia 20(2):187–202.

    Article  PubMed  Google Scholar 

  • Panula P., Pirvola U., Auvinen S. and Airaksinen M. (1989). Histamine-immunoreactive nerve fibers in the rat brain.Neuroscience 28:585–610.

    Article  PubMed  Google Scholar 

  • Panula P., Tuomisto L., Karhunen T., Sarviharju M., and Korpi E.R. (1992). Increased neuronal histamine in thiamine-deficient rats.Agents and Actions (spec Conf Issue) C:354–357.

    Article  Google Scholar 

  • Papp M., Tarczy M., Takatas A., Auguszt A., Komoly S. and Tulok I. (1981). Symmetric central thalamic necrosis in experimental thiamine deficient encephalopathy.Acta Neuropathol. (Berl.) Suppl. VII:48–49.

    Google Scholar 

  • Petralia R.S. and Wenthold R.J. (1992). Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain.J. Comp. Neurol. 318:329–354.

    Article  PubMed  Google Scholar 

  • Rindi G. and Perri V. (1961). Uptake of pyrithiamine by tissue in rats.Biochem. J. 80:214–216.

    PubMed  Google Scholar 

  • Robertson D.M., Wasan S.M. and Skinner D.B. (1968). Ultrastructural features of early brainstem lesions of thiamine deficient rats.Am. J. Pathol. 52:1081–1097.

    PubMed  Google Scholar 

  • Robinson J.K. and Mair R.G. (1992). MK-801 prevents brain lesions and delayed-nonmatching-to-sample deficits produced by pyrithiamine-induced encephalopathy in rats.Behav. Neurosci. 106:623–633.

    Article  PubMed  Google Scholar 

  • Rose S.E., Nixon P., Zelaya F., Wholohan B., Zimitat C., Moxon N., Crozier S., Brereton I. and Doddrell D. (1993). Application of high field localizedin vivo 1H MRS to study biochemical changes in the thiamine deficient rat brain under glucose load.NMR in Biomedicine 6:324–328.

    PubMed  Google Scholar 

  • Salt T.E. and Eaton S.A. (1991). Excitatory actions of the metabotropic excitatory amino acid receptor agonist,trans-(±)-1-amino-cyclopentane-1,3-dicarboxylate (t-ACPD), on rat thalamic neuronsin vivo.Eur. J. Neurosci. 3:1044–1111.

    Google Scholar 

  • Tellez I. and Terry R.D. (1968). Fine structure of the early changes in the vestibular nuclei of the thiamine deficient rat.Am. J. Pathol. 52:774–794.

    Google Scholar 

  • Traviesa D.C. (1974). Magnesium deficiency: A possible cause of thiamine refractoriness in Wernicke-Korsakoff encephalopathy.J. Neurol. Neurosurg. Psychiat. 37:959–962.

    PubMed  Google Scholar 

  • Troncoso J.C., Johnston M.V., Hess K.M., Griffin J.W. and Price D.L. (1981). Model of Wernicke's encephalopathy.Arch. Neurol. 38:350–354.

    PubMed  Google Scholar 

  • Turski L. and Turski W.A. (1993). Towards an understanding of the role of glutamate in neurodegenerative disorders: Energy metabolism and neuropathology.Experientia 49:1064–1072.

    Article  PubMed  Google Scholar 

  • Vogel S., and Hakim A.M. (1988). Effect of nimodipine on the regional cerebral acidosis accompanying thiamine deficiency in the rat.J. Neurochem. 51:1102–1110.

    PubMed  Google Scholar 

  • Victor M., Adams R.D. and Collins G.H. (1971).The Wernicke-Korsakoff Syndrome: A Clinical and Pathological Study of 245 Patients, 82 with Post-Mortem Examinations. F.A. Davis: Philadelphia.

    Google Scholar 

  • Vink R., McIntosh T.K., Demidiuk P., Weiner M.W. and Faden A.I. (1989). Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma.J. Biol. Chem. 263:757–759.

    Google Scholar 

  • Vorobjev S., Sharonova I.N., Walsh I.B. and Haas H.L. (1993). Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurons.Neuron 11:837–844.

    Article  PubMed  Google Scholar 

  • Watanabe I., Tomita T., Hung K.S. and Iwasaki Y. (1981). Edematous necrosis in thiamine-deficient encephalopathy of the mouse.J. Neuropathol. Exp. Neurol. 40:454–471.

    PubMed  Google Scholar 

  • Watanabe I. and Kanabe S. (1978). Early edematous lesion of pyrithiamine induced acute thiamine-deficient encephalopathy of mouse.J. Neuropathol. Exp. Neurol. 37:401–413.

    PubMed  Google Scholar 

  • Witt E.D. (1985). Neuroanatomical consequences of thiamine deficiency: A comparative analysis.Alcohol & Alcoholism,20:201–221.

    Google Scholar 

  • Zhang S.X., Weilersbacher G.S., Henderson S.W., Corso T., Olney J.W. and Langlais P.J. (1995). Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions.J. Neuropathol. Exp. Neurol. 54:255–267.

    PubMed  Google Scholar 

  • Zieve L. (1975). Role of cofactors in the treatment of malnutrition as exemplified by magnesium.Yale J. Biol. Med. 48:229–237.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langlais, P.J. Pathogenesis of diencephalic lesions in an experimental model of Wernicke's encephalopathy. Metab Brain Dis 10, 31–44 (1995). https://doi.org/10.1007/BF01991781

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01991781

Key words

Navigation