Skip to main content
Log in

The removal of metal ions from transferrin, ferritin and ceruloplasmin by the cardioprotective agent ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane] and its hydrolysis product ADR-925

  • Molecular Immunopathology
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

The ability of the metal ion binding rings-opened hydrolysis product of the anthracycline cardioprotective agent ICRF-187 [dexrazoxane; (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane] to remove iron from transferrin and ferritin, and copper from ceruloplasmin was examined. ADR-925 completely removed Fe3+ from transferrin at below physiological pH but was unreactive at pH 7.4. ADR-925 slowly removed copper from ceruloplasmin at physiological pH (68% removal after 4.8 days). ADR-925 was capable of removing 18% of the iron from ferritin in 7.0 days. All of the metalloproteins displayed saturation behavior in their initial rates of metal ion removal by ADR-925. ICRF-187 may be, in part, preventing doxorubicin-induced cardiotoxicity by depleting iron and copper from these storage and transport proteins or by scavenging metal ions released from these proteins, thus inhibiting hydroxyl radical production by iron-doxorubicin complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Gianni, B. J. Corden and C. E. Myers,The biochemical basis of anthracycline toxicity and anti-tumor activity. Rev. Biochem. Toxicol.5, 1–82 (1983).

    Google Scholar 

  2. B. Halliwell and J. M. C. Gutteridge,Free Radicals in Biology and Medicine, 2nd Edition, pp. 87–93, 116–117 and 487–492. Clarendon, Oxford 1989.

    Google Scholar 

  3. C. E. Myers, L. Gianni; C. B. Simone, R. Klecker and R. Greene,Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry21, 1707–1713 (1982).

    Google Scholar 

  4. E. J. F. Demant,NADH oxidation in submitochondrial particles protects respiratory chain activity against damage by adriamycin-Fe 3+. Eur. J. Biochem.137, 113–118 (1983).

    Google Scholar 

  5. E. J. F. Demant and P. K. Jensen,Destruction of phospholipids and respiratory-chain activity in pig-heart submitochondrial particles induced by an adriamycin-iron complex. Eur. J. Biochem.132, 551–556 (1983).

    Google Scholar 

  6. J. M. C. Gutteridge,Lipid peroxidation and possible hydroxyl radical formation stimulated by the self-reduction of a doxorubicin-iron (III) complex. Biochem. Pharmacol.33, 1725–1728 (1984).

    Google Scholar 

  7. K. J. A. Davies and J. H. Doroshow,Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J. Biol. Chem.261, 3060–3067 (1986).

    Google Scholar 

  8. J. H. Doroshow and K. J. A. Davies,Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide and hydroxyl radical. J. Biol. Chem.261, 3068–3074 (1986).

    Google Scholar 

  9. E. H. Herman, V. J. Ferrans, C. E. Myers and J. F. Van Vleet,Comparison of the effectiveness of (±)-1,2-bis (3,5-dioxopiperazinyl-1-yl) propane (ICRF-187) and N-acetyl-cysteine in preventing chronic doxorubicin cardiotoxicity in beagles. Cancer Res.45, 276–281 (1985).

    Google Scholar 

  10. E. H. Herman,Influence of vitamin E and ICRF-187 on chronic doxorubicin cardiotoxicity in miniature swine. Lab. Invest.49, 69–77 (1983).

    Google Scholar 

  11. E. H. Herman and V. J. Ferrans,Pretreatment with ICRF-187 provides long lasting protection against chronic daunorubicin cardiotoxicity in rabbits. Cancer Chemother. Pharmacol.16, 102–106 (1986).

    Google Scholar 

  12. J. L. Speyer, M. D. Green, E. Kramer, M. Rey, J. Sanger, C. Ward, N. Dubin, V. Ferrans, P. Stecy, A. Zeleniuch-Jacquotte, J. Wernz, F. Feit, W. Slater, R. Blum and F. Muggia,Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer. N. Engl. J. Med.319, 745–752 (1988).

    Google Scholar 

  13. J. L. Speyer, M. D. Green, A. Zeleniuch-Jacquotte, J. C. Wernz, M. Rey, J. Sanger, E. Kramer, V. Ferrans, H. Hochster, M. Meyers, R. H. Blum, F. Feit, M. Attubato, W. Burrows and F. M. Muggia,ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J. Clin. Oncol.10, 117–127 (1992).

    Google Scholar 

  14. J. Koning, P. Palmer, C. R. Franks, D. E. Mulder, J. L. Speyer, M. D. Green and K. Hellmann,Cardioxane-ICRF-187, towards anticancer drug specificity through selective toxicity reduction. Cancer Treat. Rev.18, 1–19 (1991).

    Google Scholar 

  15. P. M. Alderton, J. Gross and M. D. Green,Comparative study of doxorubicin, mitoxantrone, and epirubicin in combination with ICRF-187 (ADR-529) in a chronic cardiotoxicity animal model. Cancer Res.52, 194–201 (1992).

    Google Scholar 

  16. Z.-X. Huang, P. M. May, K. M. Quinlan, D. R. Williams and A. M. Creighton,Metal binding by pharmaceuticals. Part 2. Interactions of Ca(II), Cu(II), Fe(II), Mg(II), Mn(II) and Zn(II) with the intracellular hydrolysis products of the antitumor agent ICRF-159 and its inactive homologue ICRF-192. Agents and Actions12, 536–542 (1982).

    Google Scholar 

  17. K. M. Dawson,Studies on the stability and cellular distribution of dioxopiperazines in cultured BHK-21S cells. Biochem. Pharmacol.24, 2249–2253 (1975).

    Google Scholar 

  18. B. B. Hasinoff,The interaction of the cardioprotective agent ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl) propane], its hydrolysis product ICRF-198, and other chelating agents with the Fe(III) and Cu(II) complexes of adriamycin. Agents and Actions26, 378–385 (1989).

    Google Scholar 

  19. B. B. Hasinoff,The iron (III) and copper (II) complexes of adriamycin promote the hydrolysis of the cardioprotective agent ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl) propane]. Agents and Actions29, 374–381 (1990).

    Google Scholar 

  20. B. B. Hasinoff,The hydrolysis-activation of the doxorubicin cardioprotective agent ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl) propane]. Drug Metab. Disp.18, 344–349 (1990).

    Google Scholar 

  21. B. B. Hasinoff,The enzymatic hydrolysis-activation of the adriamycin cardioprotective agent [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl) propane]. Drug Metab. Disp.19, 74–80 (1991).

    Google Scholar 

  22. J. M. Sisco and V. J. Stella,Is ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl) propane] unusually reactive for an imide? Pharmacol. Res.9, 1076–1082 (1992).

    Google Scholar 

  23. J. M. Sisco and V. J. Stella,An unexpected hydrolysis pH-rate profile, at pH values less than 7, of the labile imide, ICRF-187: (+)-1,2-bis(3,5-dioxopiperazin-1-yl) propane. Pharmacol. Res.9, 1209–1214 (1992).

    Google Scholar 

  24. E. H. Herman, A. El-Hage, Y. Fukada and V. J. Ferrans,ICRF-187 reduces bleomycin-induced pulmonary toxicity in mice. FASEB J.3, A 275 (1989).

    Google Scholar 

  25. C. Flandia, R. Sangueldolce, L. Rausa and N. D'Alessandro,Ameliorative effects of ICRF-187 [(+)-1,2-bis (3,5-dioxopiperazinyl-1-yl) propane] on the cardiotoxicity induced by doxorubicin or by isoproterenol in the mouse. Res. Commun. Chem. Pathol. Pharmacol.70, 259–272 (1990).

    Google Scholar 

  26. A. N. El-Hage, E. H. Herman and V. J. Ferrans,Examination of the protective effect of ICRF-187 and dimethyl sulfoxide against acetaminophen-induced hepatotoxicity in Syrian golden hamsters. Toxicology28, 295–303 (1983).

    Google Scholar 

  27. A. El-Hage, E. H. Herman, G. C. Yang, R. K. Crouch and V. J. Ferrans,Mechanism of the protective activity of ICRF-187 against alloxan-induced diabetes in mice. Res. Commun. Chem. Pathol. Pharmacol.52, 341–360 (1986).

    Google Scholar 

  28. E. J. F. Demant,Transfer of ferritin-bound iron to adriamycin. FEBS Lett.176, 97–100 (1984).

    Google Scholar 

  29. E. J. F. Demant and N. Norskov-Lauritsen,Binding of transferrin-iron by adriamycin at acidic pH. FEBS Lett.196, 321–324 (1986).

    Google Scholar 

  30. C. E. Thomas and S. D. Aust,Release of iron from ferritin by cardiotoxic anthracycline antibiotics. Arch. Biochem. Biophys.248, 684–689 (1986).

    Google Scholar 

  31. D. D. Von Hoff, D. Howser, B. J. Lewis, J. Holcenberg, R. B. Weiss and R. C. Young,Phase I study of ICRF-187 using a daily for 3 days schedule. Cancer Treat. Rep.65, 249–252 (1981).

    Google Scholar 

  32. J. T. Salonen, K. Nyyssonen, H. Korpela, J. Tuomilehto, R. Seppanen and R. Salonen,High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation86, 803–811 (1992).

    Google Scholar 

  33. G. W. Bates and M. R. Schlabach,The reaction of ferric salts with transferrin. J. Biol. Chem.248, 3228–3232 (1973).

    Google Scholar 

  34. M. R. Schlabach and G. W. Bates,The synergistic binding of anions and Fe 3+ by tranferrin. J. Biol. Chem.250, 2182–2188 (1975).

    Google Scholar 

  35. C. J. Carrano and K. N. Raymond,Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J. Am. Chem. Soc.101, 5401–5404 (1979).

    Google Scholar 

  36. R. R. Crichton, F. Roman and F. Roland,Iron mobilization from ferritin by chelating agents. J. Inorg. Biochem.13, 305–316 (1980).

    Google Scholar 

  37. K. L. Cheng, K. Ueno and T. Imamura,CRC Handbook of Organic Analytical Reagents, pp. 309–321. CRC Press, Boca Raton 1982.

    Google Scholar 

  38. E. Frieden,Ceruloplasmin: A multifunctional metalloprotein of vertebrate plasma. InMetal Ions in Biological Systems, Vol. 13 (Ed. H. Sigel) pp. 117–142, Marcel Dekker, New York 1981.

    Google Scholar 

  39. G. J. Kontoghiorghes,Iron mobilization from ferritin by α-oxohydroxy heteroaromatic chelators. Biochem. J.233, 299–302 (1986).

    Google Scholar 

  40. C. G. D. Morley and A. Bezkorovainy,Cellular iron uptake from transferrin: is endocytosis the only mechanism? Int. J. Biochem.17, 553–564 (1985).

    Google Scholar 

  41. J. Van Renswoude, K. R. Bridges, J. B. Harford and R. D. Klausner,Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: Identification of a nonlysosomal acidic compartment. Proc. Natl. Acad. Sci. USA79, 6186–6190 (1982).

    Google Scholar 

  42. D. J. Yamashiro, B. Tycko, S. R. Fluss and F. R. Maxfield,Segregation of transferrin to a mildly acid compartment (pH 6.5) para-Golgi compartment in the recycling pathway. Cell37, 789–800 (1984).

    Google Scholar 

  43. G. W. Bates, C. Billups and P. Saltman,The kinetics and mechanism of iron (III) exchange between chelates and transferrin. J. Biol. Chem.242, 2816–2821 (1967).

    Google Scholar 

  44. C. L. Vogel, E. Gorowski, E. Davila, M. Eisenberger, J. Kosinski, R. P. Agarwal and N. Savaraj,Phase I clinical trial and pharmacokinetics of weekly ICRF-187 (NSC 169780) infusion in new patients with solid tumors. Invest. New Drugs5, 187–198 (1987).

    Google Scholar 

  45. J. Marriott and D. J. Perkins,Relationships between the copper atoms of ceruloplasmin II. An interaction between the copper binding sites. Biochem. Biophys. Acta117, 395–402 (1966).

    Google Scholar 

  46. L. Pape, J. S. Multani, C. Stitt and P. Saltman,The mobilization of iron from ferritin by chelating agents. Biochemistry7, 613–616 (1968).

    Google Scholar 

  47. V. N. Samokyszyn, C. E. Thomas, D. W. Reif, M. Saito and S. D. Aust,Release of iron from ferritin and its role in oxygen radical toxicities. Drug Metabol. Rev.19, 283–303 (1988).

    Google Scholar 

  48. H. P. Monteiro, G. F. Vile and C. C. Winterbourn,Release of iron from ferritin by semiquinone, anthracycline, bipyridyl and nitroaromatic radicals. Free Rad. Biol. Med.6, 587–591 (1989).

    Google Scholar 

  49. D. W. Reif,Ferritin as a source of iron for oxidative damage. Free Rad. Biol. Med.12, 417–427 (1992).

    Google Scholar 

  50. B. B. Hasinoff,The iron (III)-adriamycin induced inactivation of the respiratory chain enzyme NADH cytochrome-c reductase. Biochem. J.265, 865–870 (1990).

    Google Scholar 

  51. R. R. Crichton, F. Foman and F. Roland,Ferritin iron mobilisation by chelating agents. FEBS Lett.110, 271–274 (1980).

    Google Scholar 

  52. E. C. Theil,Ferritin: structure, function, and regulation, Adv. Inorg. Chem.5, 2–38 (1983).

    Google Scholar 

  53. G. F. Vile and C. C. Winterbourn,d1-N, N′-dicarboxamidomethyl-N, N′-dicarboxymethyl-1,2-diaminopropane (ICRF-198) and d-1,2-bis(3,5-dioxopiperazine-1-yl) propane (ICRF-187) inhibition of Fe 3+ reduction, lipid peroxidaction, and Ca-ATPase in heart microsomes exposed to adriamycin. Cancer Res.50, 2307–2310 (1990).

    Google Scholar 

  54. N. Kojima and G. W. Bates,The reduction and release of iron from Fe 3+ -Transferrin-CO 2−3 . J. Biol. Chem.254, 8847–8854 (1979).

    Google Scholar 

  55. B. L. Hauenstein and D. R. McMillan,Metal replacement studies of blue copper proteins. InMetal Ions in Biological Systems. Vol. 13 (Ed. H. Sigel) pp. 320–347, Marcel Dekker, New York 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasinoff, B.B., Kala, S.V. The removal of metal ions from transferrin, ferritin and ceruloplasmin by the cardioprotective agent ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane] and its hydrolysis product ADR-925. Agents and Actions 39, 72–81 (1993). https://doi.org/10.1007/BF01975717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01975717

Keywords

Navigation