Skip to main content
Log in

Patterns in plant parthenogenesis

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Plant taxa that reproduce asexually display some distinct geographical and ecological patterns. A literature review reveals that such taxa 1) tend to have larger ranges, 2) tend to range into higher latitudes, and 3) tend to range to higher elevations than do their sexual relatives. Asexual taxa have a greater tendency than sexual taxa do to colonize once-glaciated areas. These trends have previously been identified as characteristic of parthenogenetic animals as well. While many authors have interpreted these trends as providing support for the ‘biotic uncertainty’ hypothesis for the maintenance of sex, these trends are consistent with several other interpretations as well. Furthermore, all of these interpretations have ignored the positive correlation that exists between ploidy level and breeding system: asexual plant and animal taxa are generally polyploid, while their sexual relatives are generally diploid. Evidence is presented for plants, and by extension for animals as well, that high ploidy levels alone could (independent of breeding system) endow individuals with the ability to tolerate these ‘extreme’ environments. For this reason, it appears premature to interpret observed distribution patterns as evidence to support hypotheses about what forces maintain sexual reproduction. Only experimental tests, using sexuals and asexuals of comparable ploidy levels, can permit us to discriminate among the alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babcock, E.B., and Stebbins, G.L., The American species ofCrepis. Their interrelationships and distribution as affected by polyploidy and apomixis. Carnegie Inst. Washington Publ. No. 504, 1938.

  2. Baker, H.G., Reproductive methods as factors in speciation in flowering plants. Cold Spring Harb. Symp. quant. Biol.24 (1959) 177–191.

    Google Scholar 

  3. Baker, H.G., The evolution of weeds. A. Rev. Ecol. Syst.5 (1974) 1–24.

    Google Scholar 

  4. Barker, W.W., Apomixis in the genusArnica (Compositae). Ph. D. thesis, U. of Washington, Seattle 1966.

    Google Scholar 

  5. Bayer, R.J., and Stebbins, G.L., Distribution of sexual and apomictic populations ofAntennaria parlinii. Evolution37 (1983) 555–561.

    Google Scholar 

  6. Beaman, J.H., The systematics and evolution ofTownsendia (Compositae). Contrib. Gray Herbarium (Harvard) No. 183, 1957.

  7. Bell, G., The masterpiece of nature: the evolution and genetics of sexuality, U. of California Press, Berkeley 1982.

    Google Scholar 

  8. Catling, P.M., Breeding systems of Northeastern North AmericanSpiranthes (Orchidaceae). Can. J. Bot.60 (1982) 3017–3039.

    Google Scholar 

  9. Celarier, R.P., Mehra, K.L., and Wulf, M.L., Cytogeography of theDichanthium annulatum complex. Brittonia10 (1958) 59–72.

    Google Scholar 

  10. Clausen, J., Partial apomixis as an equilibrium system in evolution. Caryologia6 suppl. (1954) 469–479.

    Google Scholar 

  11. Clausen, J., and Hiesey, W.M., Experimental studies on the nature of species. IV. Genetic structure of ecological races. Carnegie Institute of Washington Publication 615, 1958.

  12. Crowe, D.R., and Parker, W.H., Hybridization and agamospermy ofBidens in northwestern Ontario. Taxon30 (1981) 749–760.

    Google Scholar 

  13. deWet, J.M.J., Origins of polyploids, in: Polyploidy: biological relevance, pp. 3–15. Ed. W.H. Lewis. Plenum Press, New York 1980.

    Google Scholar 

  14. deWet, J.M.J., and Harlan, J.R., Apomixis, polyploidy, and speciation inDichanthium. Evolution24 (1970) 270–277.

    Google Scholar 

  15. Ehrendorfer, F., Polyploidy and distribution, in: Polyploidy: biological relevance, pp. 45–60. Ed. W.H. Lewis. Plenum Press, New York 1980.

    Google Scholar 

  16. Fahraeus, G.,Sorbus teodori and its distribution in Gotland, Sweden. Svensk Bot. Tidskr.74 (1980) 377–382.

    Google Scholar 

  17. Flint, R.F., Glacial and pleistocene geology. John Wiley & Sons, Inc., New York 1957.

    Google Scholar 

  18. Ford, H., Competitive relationships among apomictic dandelions (Taraxacum). Biol. J. Linn. Soc.15 (1981) 355–368.

    Google Scholar 

  19. Glesener, R.R., and Tilman, D., Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am. Nat.112 (1978) 659–673.

    Google Scholar 

  20. Gould, F.W., Notes on apomixis in sideoats grama. J. Range Mgmt.12 (1959) 25–28.

    Google Scholar 

  21. Greene, C.W., The systematics ofCalamagrostis (Gramineae) in eastern North America. Ph. D. dissertation, Harvard University, Cambridge 1980.

    Google Scholar 

  22. Greene, C.W., Sexual and apomictic reproduction inCalamagrostis (Gramineae) from eastern North America. Am. J. Bot.71 (1984) 285–293.

    Google Scholar 

  23. Guppy, G.A., Species relationships ofHieracium (Asteraceae) in British Columbia. Can. J. Bot.56 (1978) 3008–3019.

    Google Scholar 

  24. Gustafsson, A., Apomixis in higher plants. I. The mechanism of apomixis. Acta univ. lund.42 (1946) 1–66.

    Google Scholar 

  25. Gustafsson, A., Apomixis in higher plants. II. The causal aspect of apomixis. Acta univ. lund.43 (1946) 71–178.

    Google Scholar 

  26. Gustafsson, A., Apomixis in higher plants. III. Biotype and species formation. Acta univ. lund.43 (1947) 183–370.

    Google Scholar 

  27. Hancock, J.F. Jr, and Wilson, R.E., Biotype selection inErigeron annuus during old field succession. Bull. Torrey bot. Club103 (1976) 122–125.

    Google Scholar 

  28. Haskell, G., The history, taxonomy, and breeding system of apomictic British Rubi, in: Reproductive biology and taxonomy of vascular plants, pp. 141–151. Ed. J.G. Hawkes. Pergamon Press, Oxford 1966.

    Google Scholar 

  29. Hiesey, W.M., Growth and development of species and hybrids ofPoa under controlled temperatures. Am. J. Bot.40 (1953) 205–221.

    Google Scholar 

  30. Hiesey, W.M., and Nobs, M.A., Genetic and transplant studies on contrasting species and ecological races of theAchillea millefolium complex. Bot. Gaz.131 (1970) 245–259.

    Google Scholar 

  31. Hiesey, W.M., and Nobs, M.A., Experimental studies on the nature of species. VI. Interspecific hybrid derivatives between facultatively apomictic species of bluegrass and their responses to contrasting environments. Carnegie Inst. of Washington Publication 636, 1982.

  32. Hull, V.J., and Groves, R.H., Variation inChrondrilla juncea L. in south-eastern Australia. Aust. J. Bot.21 (1973) 113–135.

    Google Scholar 

  33. Jinks, J.L., Perkins, J.M., and Pooni, H.S., The incidence of epistasis in normal and extreme environments. Heredity31 (1973) 263–270.

    Google Scholar 

  34. Johnson, A.W., and Packer, J.G., Polyploidy and environment in arctic Alaska. Science148 (1965) 237–239.

    Google Scholar 

  35. Khokhlov, S.S., Evolutionary-genetic problems of apomixis in angiosperms, in: Apomixis and plant breeding, pp. 3–17. Ed. S.S. Khokhlov. Nauka Publishers, Moscow 1976.

    Google Scholar 

  36. Lewis, W.H., Polyploidy in species populations, in: Polyploidy: biological relevance, pp. 103–144. Ed. W.H. Lewis. Plenum Press, New York 1980.

    Google Scholar 

  37. Levin, D.A., Pest pressure and recombination systems in plants. Am. Nat.109 (1975) 437–451.

    Google Scholar 

  38. Levin, D.A., Polyploidy and novelty in flowering plants. Am. Nat.122 (1983) 1–25.

    Google Scholar 

  39. Van Loenhoud, P.J., and Duyts, H., A comparative study of the germination ecology of some microspecies ofTaraxacum Wigg. Acta bot. neerl.30 (1981) 161–182.

    Google Scholar 

  40. Lokki, J., and Saura, A., Polyploidy in insect evolution, in: Polyploidy: biological relevance, pp. 277–312. Ed. W.H. Lewis. Plenum Press, New York 1980.

    Google Scholar 

  41. Lyman, J.C., and Ellstrand, N.C., Clonal diversity inTaraxacum officinale (Compositae), an apomict. Heredity53 (1984) 1–10.

    Google Scholar 

  42. Lynch, M., Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q. Rev. Biol.59 (1984) 257–290.

    Google Scholar 

  43. Manton, I., The problem ofBiscutella laevigata L. Z. indukt. Abstamm.-u. VererbLehre67 (1934) 41–57.

    Google Scholar 

  44. Maynard Smith, J., The evolution of sex. Cambridge University Press, Cambridge 1978.

    Google Scholar 

  45. Muntzing, A., Apomixis and sexuality in new material ofPoa alpina from middle Sweden. Hereditas54 (1966) 314–337.

    Google Scholar 

  46. Nijs, J.C.M. den, and Sterk, A.A., Cytogeographical studies ofTaraxacum (section Taraxacum) in Central Europe. Bot. Jb.101 (1980) 527–554.

    Google Scholar 

  47. Nijs, J.C.M. den, Sterk, A.A., and Van der Hammen, H., Cytological and ecological notes on theTaraxacum sections Erythrosperma and Obliqua of the coastal area of the Netherlands. Acta bot. neerl.27 (1978) 287–305.

    Google Scholar 

  48. Nygren, A., Apomixis in the angiosperms. II. Bot. Rev.20 (1954) 577–643.

    Google Scholar 

  49. Porsild, A.E., The genusAntennaria in eastern Arctic and subarctic America. Bot. Tidskr.61 (1965) 22–55.

    Google Scholar 

  50. Price, R.A.,Draba streptobrachia (Brassicaceae), a new species from Colorado. Brittonia32 (1980) 160–169.

    Google Scholar 

  51. Richards, A.J., The origin ofTaraxacum agamospecies. Bot. J. Linn. Soc.66 (1973) 189–211.

    Google Scholar 

  52. Rollins, R.C., Sources of genetic variation inParthenium argentatum Gray (Compositae). Evolution3 (1949) 358–368.

    Google Scholar 

  53. Roose, M.L., and Gottlieb, L.D., Genetic and biochemical consequences of polyploidy inTragopogon. Evolution30 (1976) 818–830.

    Google Scholar 

  54. Sax, H.J., Polyploidy and apomixis inCotoneaster. J. Arnold Arbor.35 (1954) 334–365.

    Google Scholar 

  55. Schultz, R.J., Role of polyploidy in the evolution of fishes, in: Polyploidy: biological relevance, pp. 313–340. Ed. W.H. Lewis. Plenum Press, New York 1980.

    Google Scholar 

  56. Smith, H.E.,Sedum pulchellum: a physiological and morphological comparison of diploid, tetraploid, and hexaploid races. Bull. Torrey bot. Club73 (1946) 495–541.

    Google Scholar 

  57. Solbrig, O.T., and Simpson, B.B., Components of regulation of a population of dandelions in Michigan. J. Ecol.62 (1974) 473–486.

    Google Scholar 

  58. Soreng, R.J., Dioecy and apomixis in thePoa fendleriana complex (Poaceae). Abstract, Am. J. Bot.71 (1984) 189.

    Google Scholar 

  59. Sorensen, T., and Gudjonsson, G., Spontaneous chromsome-aberrants in apomicticTaraxaca. K. danske Vidensk. Selsk. biol. Skr.4 (1946) 1–48.

    Google Scholar 

  60. Stebbins, G.L., Variation and evolution in plants. Columbia U. Press, New York 1950.

    Google Scholar 

  61. Stebbins, G.L., Longevity, habitat, and release of genetic variability in the higher plants. Cold Spring Harb. Symp. quant. Biol.23 (1958) 365–378.

    Google Scholar 

  62. Stebbins, G.L., Chromosomal evolution in higher plants. Addison-Wesley Pub. Co. 1971.

  63. Stebbins, G.L., Polyploidy in plants: unsolved problems and prospects, in: Polyploidy: biological relevance, pp. 495–520. Ed. W.H. Lewis. Plenum Press, New York 1980.

    Google Scholar 

  64. Sterk, A.A., den Nijs, J.C.M., and Kreune, W., Sexual and agamospermousTaraxacum spp. in the Netherlands. Acta bot. neerl.31 (1982) 227–238.

    Google Scholar 

  65. Sullivan, V.I., Diploidy, polyploidy, and agamospermy among species ofEupatorium (Compositae). Can. J. Bot.54 (1976) 2907–2917.

    Google Scholar 

  66. Tal, M., Physiology of polyploids, in: Polyploidy: biological relevance, pp. 61–75. Ed. W.H. Lewis. Plenum Press, New York 1980.

    Google Scholar 

  67. Templeton, A.R., The prophecies of parthenogenesis, in: Evolution and genetics of life histories, pp. 75–101. Eds H. Dingle and J.P. Hegmann. Springer-Verlag, New York 1982.

    Google Scholar 

  68. Tomkins, D.J., and Grant, W.F., Morphological and genetic factors influencing the response of weed species to herbicides. Can. J. Bot.56 (1978) 1466–1471.

    Google Scholar 

  69. Turesson, G., Variation in the apomictic microspecies ofAlchemilla vulgaris L. Bot. Notiser (1943) 413–427.

  70. Turesson, G., and Turesson, B., Experimental studies inHieracium pilosella L. I. Reproduction, chromosome number, and distribution. Hereditas46 (1960) 717–736.

    Google Scholar 

  71. Usberti, J.A. Jr, and Jain, S.K., Variation inPanicum maximum: a comparison of sexual and asexual populations. Bot. Gaz.139 (1978) 112–116.

    Google Scholar 

  72. Vandel, A., La parthenogenese geographique. Contribution a l'etude biologique et cytologique de la parthenogenese naturelle. Bull. biol. Fr. Belg.62 (1928) 164–281.

    Google Scholar 

  73. Vandel, A., La parthenogenese geographique. IV. Polyploidie et distribution geographique. Bull. biol. Fr. Belg.74 (1940) 94–100.

    Google Scholar 

  74. Watanabe, K., Fukuhara, T., and Huziwara, Y., Studies on the AsianEupatorias. I.Eupatorium chinese var.simplicifolium from the Rokko Mountains. Bot. Mag. Tokyo95 (1982) 261–280.

    Google Scholar 

  75. White, M.J.D., Animal cytology and evolution. Cambridge U. Press, Cambridge, England 1973.

    Google Scholar 

  76. Wolf, S.J., Cytogeographical studies in genusArnica (Compositae: Senecioneae). I. Am. J. Bot.67 (1980) 300–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierzychudek, P. Patterns in plant parthenogenesis. Experientia 41, 1255–1264 (1985). https://doi.org/10.1007/BF01952068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952068

Key words

Navigation