Summary
Diverse cell types, including Amoebae, leukocytes, embryonic cells and tumour cells move about on solid surfaces to accomplish such activities as feeding, bacterial destruction, embryological development and metastasis. Theories of the mechanism of this movement are reviewed and a model is proposed which invokes the existence of specific, laterally mobile, transmembranous structures in the cell membrane, which are reversibly adhesive for both the contractile apparatus of the cell internally, and the substratum externally. By this model, the movement of all these cell types can be explained.
Similar content being viewed by others
References
de Bruyn, P. P. H., Theories of amoeboid movement. Q. Rev. Biol.22 (1944) 1–24.
Allen, R. D., Amoeboid movement, in: The Cell, Biochemistry, Physiology, Morphology, vol. 2, pp. 135–216. Eds J. Brachet and A. E. Mirsky. Academic Press, New York 1961.
Kavanau, J. L., Amoeboid locomotion, in: Structure and Function of Biological Membranes, vol. 2, pp. 479–554. Holden Day, San Francisco 1965.
Wolpert, L., Cell movement and cell contact. Sci. Basis Med. A. Rev. pp. 81–98. Athlone Press, London 1971.
Komnick, H., Stockem, W., and Wohlfarth-Bottermann, K. E., Cell motility: mechanisms in protoplasmic streaming and amoeboid movement. Int. Rev. Cytol.34 (1973) 169–249.
Taylor, D. L., and Condeelis, J. S., Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol.56 (1979) 57–144.
Abercrombie, M., The crawling movements of metazoan cells. Proc. R. Soc. Lond. B207 (1980) 129–147.
Jeon, K. W. (Ed.) The Biology of Amoeba. Academic Press, New York 1973.
Bellairs, R., and Curtis, A. S. G. (Eds), Cell Behaviour. Cambridge University Press, 1982.
Harris, R. J. C. (Ed.), Cell Movement and Cell Contact. Exp. Cell Res. Suppl.8 (1961).
Allen, R. D., and Kamiya, N. (Eds), Primitive Motile Systems in Biology. Academic Press, New York 1964.
Porter, R., and Fitzsimons, D. W. (Eds), Locomotion of Tissue Cells. Ciba Foundation Symp.14 (1973).
Inoue, S., and Stephens, R. E. (Eds), Molecules and Cell Movement. (General Society of Physiologists Series, vol. 30) Raven Press, New York 1975.
Goldman, R., Pollard, T., and Rosenbaum, J. (Eds), Cold Spring Harbour Conferences on Cell Proliferation3 (1976).
Curtis, A. S. G., and Pitts, J. D. (Eds), Cell Adhesion and Motility. Cambridge University Press, 1980.
Huxley, H. E., Bray, D., and Weeds, A. G. (Eds), Molecular Biology of Cell Locomotion. Phil. Trans. R. Soc. Lond. B299 (1982) 145–327.
Mast, S. O., Locomotion inAmoeba proteus (Leidy). Protoplasma14 (1931) 321–330.
Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., The locomotion of fibroblasts in culture. II. Ruffling. Exp. Cell Res.60 (1970) 437–444.
Bovee, E. C., Morphological differences among pseudopodia of various small amebae and their functional significance, in: Primitive Motile Systems in Cell Biology, pp. 189–289. Eds R. D. Allen and N. Kayima. Academic Press, New York 1964.
Goldacre, R. J., The action of general anaesthetics on amoebae and the mechanism of the response to touch. Symp. Soc. exp. Biol.6 (1952) 128–144.
Allen, R. D., and Francis, D. W., Cytoplasmic contraction and the distribution of water in the amoeba. Symp. Soc. exp. Biol.19 (1965) 259–271.
Landau, J. V., Zimmerman, A. M., and Marsland, D. A., Temperature-pressure experiments onAmoeba proteus; plasmagel structure in relation to form and movement. J. cell. comp. Physiol.44 (1954) 211–232.
Pantin, C. F. A., On the physiology of amoeboid movement. J. mar. biol. Ass.13 (1923) 24–69.
Lorch, I. J., Some historical aspects of Amoeba studies, in: The Biology of Amoebae, p. 1–37. Ed. K. W. Joen, Academic Press, New York 1973.
Goldarce, R. J., The role of the cell membrane in the locomotion of Amoebae, and the source of the motive force and its control by feedback. Exp. Cell Res. Suppl.8 (1961) 1–16.
Wehland, J., and Weber, K., Effects of the actin-binding protein DNAase 1 on cytoplasmic streaming and ultrastructure ofAmoeba proteus. Cell Tissue Res.199 (1979) 353–372.
Allen, R. D., and Taylor, D. L., The molecular basis of amoeboid movement, in: Molecules and Cell Movement. (General Society of Physiologists Series, vol. 30) pp. 239–258. Eds S. Inoue and R. E. Stephens. Raven Press, New York 1975.
Chien, S., Schmid-Schönbein, G. W., Sung, K.-L. P., Schmalzer, E. A., and Skalak, R., Viscoelastic properties of leukocytes, in: White Cell Mechanics: Basic Science and Clinical Aspects, pp. 19–51. Alan R. Liss, New York 1984.
Mudd, S., McCutcheon, M., and Lucke, B., Phagocytosis. Physiol. Rev.14 (1934) 210–275.
Ramsey, W. S., Locomotion of human polymorphonuclear leukocytes. Exp. Cell Res.72 (1972) 489–501.
Allen, R. D., Cooledge, J. S., and Hall, P. J., Streaming in cytoplasm dissociated from the giant amoebaChaos chaos. Nature187 (1960) 896–899.
Dembo, M., and Harris, A. K., Motion of particles adhering to the leading lamella of crawling cells. J. Cell Biol.91 (1981) 528–538.
Keller, H. U., Zimmermann, A., and Cottier, H., Crawling-like movements, adhesion to solid substrata and chemokinesis of neutrophil granulocytes. J. Cell Sci.64 (1983) 89–106.
Jennings, H. S., Contributions to the study of lower organisms. 6. The movements and reactions of amoeba. Carnegie Inst. Washington Publ.16 (1904) 129–234.
Jahn, T. L., Relative motion inAmoeba proteus, in: Primitive Motile Systems in Cell Biology, pp. 279–302. Eds R. D. Allen and N. Kamiya. Academic Press, New York 1964.
Dellinger, O. P., Locomotion of amoeba and allied forms. J. exp. Zool.3 (1906) 337–358.
Bell, L. G. E., and Jeon, K. W., Locomotion ofAmoeba proteus. Nature198 (1963) 675–676.
Lewis, W. H., On the locomotion of the polymorphonuclear neutrophils of the rat in autoplasma cultures. Bull. Johns Hopkins Hosp55 (1934) 273–279.
Senda, N., Tamura, H., Shibata, N., Yoshitake, J., Kondo, K., and Tanaka, K., The mechanism of the movement of leukocytes. Exp. Cell Res.91 (1975) 393–407.
Shields, J. M., and Haston, W. S., Behaviour of neutrophil leukocytes in uniform concentrations of chemotactic factors: contraction waves, cell polarity and persistence. J. Cell Sci.74 (1985) 75–93.
Abercrombie, M., The bases of the locomotory behaviour of fibroblasts. Exp. Cell Res. Suppl.8 (1961) 188–198.
Keller, H. U., Wilkinson, P. C., Abercrombie, M., Becker, E. L., Hirsch, J. G., Miller, M. E., Ramsey, W. S., and Zigmond, S. H., A proposal for the definition of terms related to the locomotion of leukocytes and other cells. Clin. exp. Immun.27 (1977) 377–380.
Bessis, M., and de Boisfleury, A., A catalogue of white blood cell movements (normal and pathologic) Blood Cells2 (1976) 365–410.
Wessels, N. K., Spooner, B. S., and Luduena, M. A., Surface movements, microfilaments and cell locomotion. Ciba Foundation Symp.14 (1973) 53–82.
Sullivan, J. A., and Mandell, G. L., Motility of human polymorphonuclear neutrophils: microscopic analysis of substratum adhesion and distribution of F-actin. Cell Motil3 (1983) 31–46.
Hülsmann, N., and Habery, M., Phenomena of amoeboid movement. Behaviour of the cell surface ofHyalodicus sinplex Wolfarth-Botterman. Acta protozool.12 (1973) 71–82.
Grebecki, A., Relative motion in Amoeba proteus in respect to the adhesion sites. I. Behaviour of the monotactic forms and the mechanis of fountain phenomenon. Protoplasma123 (1984) 116–124.
Harris, A. K., Cell surface movements related to cell locomotion. Ciba Foundation Symp.14 (1973) 3–26.
Harris, A. K., Recycling of dissolved plasma membrane components as an explanation of the capping phenomenon. Nature263 (1976) 781–783.
Koch, G. L. E., Microfilament-membrane interactions in the mechanism of capping, in Cell Adhesion and Motility, pp. 425–444. Eds A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.
Oliver, J. M., and Berlin, R. D., Surface and cytoskeletal events regulating leukocyte membrane topography. Semin. Haemat.20 (1983) 282–304.
Allen, R. D., Biophysical aspects of pseudopodium formation and retraction, in: The Biology of the Amoebae, p. 201. Ed. K. W. Jeon. Academic Press, New York 1973.
Boyden, S., The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. exp. Med.115 (1962) 453–466.
Wilkinson, P. C., Chemotaxis, 2nd edn. Churchill-Livingstone, Edinburgh 1982.
Weiss, L., The adhesion of cells. Int. Rev. Cytol.9 (1960) 187–225.
Curtis, A. S. G., Timing mechanisms in the specific adhesion of cells. Exp. Cell Res. Suppl.8 (1961) 107–122.
Curtis, A. S. G., The Cell Surface. Logos Press and Academic Press, New York 1967.
Obrink, B., Epithelial cell adhesion molecules. Exp. Cell Res.163 (1986) 1–21.
Edelman, G. M., Cell adhesion and the molecular processes of morphogenesis. A. Rev. Biochem.54 (1985) 135–169.
Ambrose, E. J., The movements of fibrocytes. Exp. Cell Res. Suppl.8 (1961) 54–73.
Preston, C. M., and King, C. A., Amoeboid locomotion ofAcanthamoeba castellanii with special reference to cell-substratum interactions. J. gen. Microbiol.130 (1984) 2317–2323.
Jones, P. C. T., A contractile protein model for cell adhesion. Nature212 (1966) 365–369.
Grinnell, F., Cellular adhesiveness and extracellular substrata. Int. Rev. Cytol.53 (1978) 65–144.
Lackie, J. M., and Smith, R. P. C., Interactions of leukocytes and endothelium, in: Cell Adhesion and Motility, pp. 235–272. Eds A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.
Smith, G. S., and Lumsden, J. A., Review of neutrophil adherence, chemotaxis, phagocytosis and killing. Vet. Immun. Immunopath.4 (1983) 177–236.
Wilkinson, P. C., and Lackie, J. M., The adhesion, migration and chemotaxis of leukocytes in inflammation. Curr. Top. Path.68 (1979) 47–88.
Keller, H. U., Barandun, S., Kistler, P., and Ploem, J. S., Locomotion and adhesion of neutrophil granulocytes. Exp. Cell Res.122 (1979) 351–362.
Schreiner, A., and Hopen, G., Adhesion and locomotion of human leukocytes in vitro; importance of protein coating; effect of lidocain, ethanol and endotoxin. Acta path. microbiol. scand., Sect. C87 (1979) 333–340.
English, D., and Gabig, T. D., Differentiation and cellular processes involved in the induction and maintenance of stimulated neutrophil adherence. Blood67 (1986) 1314–1322.
Gallin, I., Leukocyte adherence-related glycoproteins LFA-1, Mo-1, and p 150, 95: a new group of monoclonal antibodies, a new disease, and a possible opportunity to understand the molecular basis of leukocyte adherence. J. infect. Dis.152 (1985) 661–664.
Keizer, G. D., Borst, J., Figdor, C. G., Spits, H., Miedema, F., Terhost, C., and De Vries, J. E., Biochemical and functional characteristics of the human leukocyte membrane antigen family LFA-1, Mo-1 and p 150,95. Eur. J. Immun.15 (1985) 1142–1148.
Springer, T. A., Miller, L. J., and Anderson, D. C., p 150, 95, the third member of the MAC-1, LFA-1 human leukocyte adhesion glycoprotein family. J. Immun.136 (1986) 240–245.
Rees, D. A., Badley, R. A., and Woods, A., Relationships between actomyosin stress fibres and some cell surface receptors in fibroblast adhesion, in: Cell Adhesion and Motility, pp. 389–423. Eds A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.
Taylor, A. C., Attachment and spreading of cells in culture. Exp. Cell Res. Suppl.8 (1961) 154–173.
Harris, A., Behaviour of cultured cells on substrata of variable adhesiveness. Exp. Cell Res.77 (1973) 285–297.
Gail, M., Time lapse studies on the motility of fibroblasts in tissue culture. Ciba Foundation Symp.14 (1973) 287–301.
Gingell, D., and Vince, S., A physical theory of cell-cell and cell-substratum interactions, in: Cell Adhesion and Motility, pp. 39–64. Eds A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.
Rich, A., and Harris, A. K., Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. J. Cell Sci.50 (1981) 1–7.
Ramsey, W. S., Hertl, W., Nowlan, E. D., and Binkowski, N. J., Surface treatments and cell attachments. In Vitro20 (1984) 802–808.
Vasiliev, J. M., and Gelfand, I. M., Interactions of normal and neoplastic fibroblasts with the substratum. Ciba Foundation Symp.14 (1973) 311–328.
Birchmeier, W., Fibroblast's focal contacts. Trends biochem. Sci.6 (1981) 234–237.
Verschueren, H., Interference reflection microscopy in cell biology: methodology and application. J. Cell Sci.75 (1985) 279–301.
Vasiliev, J. M., Spreading and locomotion of tissue cells: factors controlling the distribution of pseudopods. Phil. Trans. R. Soc. Lond.B299 (1982) 159–168.
Grinnell, F., and Geiger, B., Interaction of fibronectin-coated beads with attached and spread fibroblasts. Exp. Cell Res.162 (1986) 449–461.
Damsky, C. H., Knudsen, K. A., Bradley, D., Buck, A. C., and Horwitz, A. F., Distribution of the cell substratum attachment (CSAT) antigen on myogenic and fibroblastic cells in culture. J. Cell Biol.100 (1985) 1528–1539.
Bignold, L. P., Crawling-like movements of polymorphonuclear leukocytes in plasma are not a good index of their motility in microporous cellulose acetate membrane. Cell Biol. Int. Rpts10 (1986) 535–543.
Curtis, A. S. G., and Büültjens, T. E. J., Cell adhesion and locomotion. Ciba Foundation Symp.14 (1973) 171–179.
Wilkinson, P. C., Haston, W. S., and Shields, J. M., Some determinants of the locomotory behaviour of phagocytes and lymphocytes in vitro. Clin. exp. Immun.50 (1982) 461–473.
Zigmond, S. H., Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol.75 (1977) 606–616.
Haston, W. S., and Shields, J. M., Neutrophil leukocyte chemotaxis: a simplified assay for measuring polarising responses to chemotactic factors. J. immun. Meth.81 (1985) 229–237.
McCutcheon, M., Chemotaxis in leukocytes. Physiol. Rev.26 (1946) 319–336.
Ramsey, W. S., Analysis of individual leukocyte behaviour during chemotaxis. Exp. Cell Res.70 (1972) 129–139.
Griffin, F. M., Griffin, J. A., and Silverstein, S. C., Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. exp. Med.144 (1976) 788–809.
Stossel, T. P., Phagocytosis, Progr. clin. Biol. Res.13 (1977) 87–102.
Hyman, L. H., Metabolic gradients in Amoeba and their relationship to the mechanism of amoeboid movement. J. exp. Zool.24 (1917) 55–99.
Bovee, E. C., and Jahn, T. L., Locomotion and behaviour, in: The Biology of the Amoebae, pp. 249–290. Ed. K. W. Joen. Academic Press, New York 1973.
Stossel, T. P., The structure of cortical cytoplasm, Phil. Trans. R. Soc. Lond.B299 (1982) 275–289.
Stossel, T. P., Hartwig, J. H., Yin, H. L., Southwick, F. S., and Zaner, K. S., The motor of leukocytes. Fedn Proc.43 (1984) 2760–2763.
Southwick, F. S., and Stossel, T. P., Contractile proteins in leukocyte function. Semin. Haemat.20 (1983) 305–321.
Pollard, T. D., Polymerization of ADP-actin. J. Cell Biol.99 (1984) 769–777.
Harris, H., Gel models for cell motility. Nature308 (1984) 721.
Szent-Gyori, A., Chemistry of Muscular Contraction. Academic Press, New York 1947.
Goldacre, R. J., and Lorch, I. J., Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movement and osmotic work. Nature166 (1950) 497–500.
Pollard, T. D., Progress in understanding amoeboid movement at the molecular level, in: The Biology of the Amoebae, p. 291. Ed. K. W. Jeon. Academic Press, New York 1973.
Hartwig, J. H., Niederman, R., and Lind, S. E., Cortical actin structures and their relationship to mammalian cell movements. Subcell. Biochem.11 (1985) 1–49.
Yumura, S., Mori, H., and Fukui, Y., Localization of actin and myosin for the study of ameboid movement in Dictostelium using improved immunofluorescence. J. Cell Biol.99 (1984) 894–899.
Trueman, E. R., and Jones, H. D., Crawling and burrowing, in: Mechanics and Energetics of Animal Locomotion, pp 204–221. Eds R. Alexander and G. Goldspink, Chapman and Hall, London 1977.
Huxley, H. E., Muscular contraction and cell motility, Nature243 (1973) 445–449.
Dunn, G. A., Mechanisms of fibroblast locomotion, in: Cell Adhesion and Motility, pp. 409–424. Eds. A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.
Schwartz, M. A., and Luna, E. J., Binding and assembly of actin filaments by plasma membranes fromDictyostelium discoideum. J. Cell Biol.102 (1986) 2067–2075.
Kavanau, J. L., A new theory of amoeboid locomotion. J. theor. Biol.4 (1963) 124–141.
Watson, J. D. (Ed.), Organization of the Cytoplasm. Cold Spring Harb. Symp. quant. Biol.46 (1982).
Porter, K. (Ed.), Aqueous environment of the cytomatrix. J. Cell Biol.99 (1984) 167s–196s.
Oster, G. F., On the crawling of cells. J. Embryol. exp. Morph.83 suppl. (1984) 329–364.
Holzapfel, G., Wehland, G., and Weber, K., Calcium control of actin-myosin based contraction in Triton models of mouse 3T3 fibroblasts is mediated by the myosin light chain kinase (MLCK)-calmodulin complex. Exp. Cell Res.148 (1983) 117–126.
Strohmeier, R., and Bereiter-Hahn, J., Control of cell shape and locomotion by external calcium. Exp. Cell Res.154 (1984) 412–420.
Sklar, L. A., Omann, G. M., and Painter, R. G., Relationship of actin polymerization and depolymerization to light scattering in human neutrophils: dependence on receptor occupancy and intracellular Ca++. J. Cell Biol.101 (1985) 1161–1166.
Pies, N. J., and Wohlfarth-Botterman, N.-E., Reactivation of a cell-free model fromPhysarum polycephalum: studies on cryosections indicate an inhibitory effect of Ca++ on cytoplasmic actomyosin contraction. Eur. J. Cell Biol.40 (1986) 139–149.
Sha'afi, R. I., Shefcyk, J., Yassin, R., Molski, T. F. P., Volpi, M., Naccache, P. H., White, J. R., Feinstein, M. B., and Becker, E. L., Is a rise in intracellular concentration of free calcium necessary or sufficient for stimulated cytoskeletal-associated actin? J. Cell Biol.102 (1986) 1459–1463.
McNeil, P. L., Swanson, J. A., Wright, S. D., Silverstein, S. C., and Taylor, D. L., Fc-receptor-mediated phagocytosis occurs in macrophages without an increase in average [Ca++]. J. Cell Biol.102 (1986) 1586–1592.
Haston, W. S., and Shields, J. M., Signal transduction in human neutrophil leukocytes: effects of external Na+ and Ca2+ on cell polarity. J. Cell Sci.82 (1986) 249–261.
Allison, A. C., The role of microfilaments and microtubules in cell movement. Ciba Foundation Symp.14 (1973) 109–142.
Weatherbee, J. A., Membranes and cell movement: interactions of membranes with the proteins of the cytoskeleton. Int. Rev. Cytol. Suppl.12 (1981) 113–176.
Oliver, J. M., and Berlin, R. D., Mechanisms that regulate the structural and functional architecture of cell surfaces. Int. Rev. Cytol.74 (1982) 55–94.
Vasiliev, J. M., Spreading of non-transformed and transformed cells. Biochim. biophys. Acta780 (1985) 21–65.
Pollard, T. D., and Cooper, J. A., Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. A. Rev. Biochem.55 (1986) 987–1035.
Bennett, H., and Condeelis, J., A gradient in the density of intramembrane particles is formed during capping induced by concavalin-A. J. Cell Sci.83 (1986) 61–76.
Klebanoff, S. J., and Clark, R. A., The Neutrophil, p. 163. North Holland, Amsterdam 1976.
Singer, D. J., and Nicholson, G. L., The fluid mosaic model of the structure of cell membranes. Cell membranes are viewed as twodimensional solutions of oriented globular proteins and lipids. Science175 (1972) 720–731.
de Petris, S., and Raff, M. C., Fluidity of the plasma membrane and its implications for cell movement. Ciba Foundation Symp.14 (1973) 27–40.
Daniels, E. W., Ultrastructure, in: Biology of the Amoeba, pp. 125–169. Ed. K. W. Jeon. Academic Press, New York 1973.
Szent-Gyori, A., Bioenergetics. Academic Press, New York 1957.
Taylor, D. L., and Fechheimer, M., Cytoplasmic structure and contractility: the solation-coupling hypothesis. Phil. Trans. R. Soc. Lond.B299 (1982) 185–196.
Grebecki, A., Two-directional pattern of movements in the cell surface ofAmoeba proteus. J. Cell Sci.83 (1986) 23–36.
Carter, S. B., Principles of cell motility: the direction of cell movement and cancer invasion. Nature208 (1965) 1183–1187.
Carter, S. B., Haptotaxis and the mechanism of cell motility. Nature213 (1967) 256–261.
Kaplan, S. S., Pesando, J. M., Basford, R. E., and Zdziarski, U. E., Monoclonal antibodies to CALLA do not alter polymorphonuclear functions. Am. J. Haemat.23 (1986) 209–215.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bignold, L.P. Amoeboid movement: A review and proposal of a ‘membrane ratchet’ model. Experientia 43, 860–868 (1987). https://doi.org/10.1007/BF01951643
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF01951643