Skip to main content
Log in

Amoeboid movement: A review and proposal of a ‘membrane ratchet’ model

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Diverse cell types, including Amoebae, leukocytes, embryonic cells and tumour cells move about on solid surfaces to accomplish such activities as feeding, bacterial destruction, embryological development and metastasis. Theories of the mechanism of this movement are reviewed and a model is proposed which invokes the existence of specific, laterally mobile, transmembranous structures in the cell membrane, which are reversibly adhesive for both the contractile apparatus of the cell internally, and the substratum externally. By this model, the movement of all these cell types can be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Bruyn, P. P. H., Theories of amoeboid movement. Q. Rev. Biol.22 (1944) 1–24.

    Article  Google Scholar 

  2. Allen, R. D., Amoeboid movement, in: The Cell, Biochemistry, Physiology, Morphology, vol. 2, pp. 135–216. Eds J. Brachet and A. E. Mirsky. Academic Press, New York 1961.

    Google Scholar 

  3. Kavanau, J. L., Amoeboid locomotion, in: Structure and Function of Biological Membranes, vol. 2, pp. 479–554. Holden Day, San Francisco 1965.

    Google Scholar 

  4. Wolpert, L., Cell movement and cell contact. Sci. Basis Med. A. Rev. pp. 81–98. Athlone Press, London 1971.

    Google Scholar 

  5. Komnick, H., Stockem, W., and Wohlfarth-Bottermann, K. E., Cell motility: mechanisms in protoplasmic streaming and amoeboid movement. Int. Rev. Cytol.34 (1973) 169–249.

    Article  Google Scholar 

  6. Taylor, D. L., and Condeelis, J. S., Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol.56 (1979) 57–144.

    Article  CAS  PubMed  Google Scholar 

  7. Abercrombie, M., The crawling movements of metazoan cells. Proc. R. Soc. Lond. B207 (1980) 129–147.

    Google Scholar 

  8. Jeon, K. W. (Ed.) The Biology of Amoeba. Academic Press, New York 1973.

    Google Scholar 

  9. Bellairs, R., and Curtis, A. S. G. (Eds), Cell Behaviour. Cambridge University Press, 1982.

  10. Harris, R. J. C. (Ed.), Cell Movement and Cell Contact. Exp. Cell Res. Suppl.8 (1961).

  11. Allen, R. D., and Kamiya, N. (Eds), Primitive Motile Systems in Biology. Academic Press, New York 1964.

    Google Scholar 

  12. Porter, R., and Fitzsimons, D. W. (Eds), Locomotion of Tissue Cells. Ciba Foundation Symp.14 (1973).

  13. Inoue, S., and Stephens, R. E. (Eds), Molecules and Cell Movement. (General Society of Physiologists Series, vol. 30) Raven Press, New York 1975.

    Google Scholar 

  14. Goldman, R., Pollard, T., and Rosenbaum, J. (Eds), Cold Spring Harbour Conferences on Cell Proliferation3 (1976).

  15. Curtis, A. S. G., and Pitts, J. D. (Eds), Cell Adhesion and Motility. Cambridge University Press, 1980.

  16. Huxley, H. E., Bray, D., and Weeds, A. G. (Eds), Molecular Biology of Cell Locomotion. Phil. Trans. R. Soc. Lond. B299 (1982) 145–327.

  17. Mast, S. O., Locomotion inAmoeba proteus (Leidy). Protoplasma14 (1931) 321–330.

    Article  Google Scholar 

  18. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., The locomotion of fibroblasts in culture. II. Ruffling. Exp. Cell Res.60 (1970) 437–444.

    Article  CAS  PubMed  Google Scholar 

  19. Bovee, E. C., Morphological differences among pseudopodia of various small amebae and their functional significance, in: Primitive Motile Systems in Cell Biology, pp. 189–289. Eds R. D. Allen and N. Kayima. Academic Press, New York 1964.

    Chapter  Google Scholar 

  20. Goldacre, R. J., The action of general anaesthetics on amoebae and the mechanism of the response to touch. Symp. Soc. exp. Biol.6 (1952) 128–144.

    Google Scholar 

  21. Allen, R. D., and Francis, D. W., Cytoplasmic contraction and the distribution of water in the amoeba. Symp. Soc. exp. Biol.19 (1965) 259–271.

    CAS  PubMed  Google Scholar 

  22. Landau, J. V., Zimmerman, A. M., and Marsland, D. A., Temperature-pressure experiments onAmoeba proteus; plasmagel structure in relation to form and movement. J. cell. comp. Physiol.44 (1954) 211–232.

    Article  CAS  PubMed  Google Scholar 

  23. Pantin, C. F. A., On the physiology of amoeboid movement. J. mar. biol. Ass.13 (1923) 24–69.

    Article  Google Scholar 

  24. Lorch, I. J., Some historical aspects of Amoeba studies, in: The Biology of Amoebae, p. 1–37. Ed. K. W. Joen, Academic Press, New York 1973.

    Google Scholar 

  25. Goldarce, R. J., The role of the cell membrane in the locomotion of Amoebae, and the source of the motive force and its control by feedback. Exp. Cell Res. Suppl.8 (1961) 1–16.

    Google Scholar 

  26. Wehland, J., and Weber, K., Effects of the actin-binding protein DNAase 1 on cytoplasmic streaming and ultrastructure ofAmoeba proteus. Cell Tissue Res.199 (1979) 353–372.

    Article  CAS  PubMed  Google Scholar 

  27. Allen, R. D., and Taylor, D. L., The molecular basis of amoeboid movement, in: Molecules and Cell Movement. (General Society of Physiologists Series, vol. 30) pp. 239–258. Eds S. Inoue and R. E. Stephens. Raven Press, New York 1975.

    Google Scholar 

  28. Chien, S., Schmid-Schönbein, G. W., Sung, K.-L. P., Schmalzer, E. A., and Skalak, R., Viscoelastic properties of leukocytes, in: White Cell Mechanics: Basic Science and Clinical Aspects, pp. 19–51. Alan R. Liss, New York 1984.

    Google Scholar 

  29. Mudd, S., McCutcheon, M., and Lucke, B., Phagocytosis. Physiol. Rev.14 (1934) 210–275.

    Article  CAS  Google Scholar 

  30. Ramsey, W. S., Locomotion of human polymorphonuclear leukocytes. Exp. Cell Res.72 (1972) 489–501.

    Article  CAS  PubMed  Google Scholar 

  31. Allen, R. D., Cooledge, J. S., and Hall, P. J., Streaming in cytoplasm dissociated from the giant amoebaChaos chaos. Nature187 (1960) 896–899.

    Article  CAS  PubMed  Google Scholar 

  32. Dembo, M., and Harris, A. K., Motion of particles adhering to the leading lamella of crawling cells. J. Cell Biol.91 (1981) 528–538.

    Article  CAS  PubMed  Google Scholar 

  33. Keller, H. U., Zimmermann, A., and Cottier, H., Crawling-like movements, adhesion to solid substrata and chemokinesis of neutrophil granulocytes. J. Cell Sci.64 (1983) 89–106.

    Article  CAS  PubMed  Google Scholar 

  34. Jennings, H. S., Contributions to the study of lower organisms. 6. The movements and reactions of amoeba. Carnegie Inst. Washington Publ.16 (1904) 129–234.

    Google Scholar 

  35. Jahn, T. L., Relative motion inAmoeba proteus, in: Primitive Motile Systems in Cell Biology, pp. 279–302. Eds R. D. Allen and N. Kamiya. Academic Press, New York 1964.

    Chapter  Google Scholar 

  36. Dellinger, O. P., Locomotion of amoeba and allied forms. J. exp. Zool.3 (1906) 337–358.

    Article  Google Scholar 

  37. Bell, L. G. E., and Jeon, K. W., Locomotion ofAmoeba proteus. Nature198 (1963) 675–676.

    Article  Google Scholar 

  38. Lewis, W. H., On the locomotion of the polymorphonuclear neutrophils of the rat in autoplasma cultures. Bull. Johns Hopkins Hosp55 (1934) 273–279.

    Google Scholar 

  39. Senda, N., Tamura, H., Shibata, N., Yoshitake, J., Kondo, K., and Tanaka, K., The mechanism of the movement of leukocytes. Exp. Cell Res.91 (1975) 393–407.

    Article  CAS  PubMed  Google Scholar 

  40. Shields, J. M., and Haston, W. S., Behaviour of neutrophil leukocytes in uniform concentrations of chemotactic factors: contraction waves, cell polarity and persistence. J. Cell Sci.74 (1985) 75–93.

    Article  CAS  PubMed  Google Scholar 

  41. Abercrombie, M., The bases of the locomotory behaviour of fibroblasts. Exp. Cell Res. Suppl.8 (1961) 188–198.

    Article  PubMed  Google Scholar 

  42. Keller, H. U., Wilkinson, P. C., Abercrombie, M., Becker, E. L., Hirsch, J. G., Miller, M. E., Ramsey, W. S., and Zigmond, S. H., A proposal for the definition of terms related to the locomotion of leukocytes and other cells. Clin. exp. Immun.27 (1977) 377–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bessis, M., and de Boisfleury, A., A catalogue of white blood cell movements (normal and pathologic) Blood Cells2 (1976) 365–410.

    Google Scholar 

  44. Wessels, N. K., Spooner, B. S., and Luduena, M. A., Surface movements, microfilaments and cell locomotion. Ciba Foundation Symp.14 (1973) 53–82.

    Google Scholar 

  45. Sullivan, J. A., and Mandell, G. L., Motility of human polymorphonuclear neutrophils: microscopic analysis of substratum adhesion and distribution of F-actin. Cell Motil3 (1983) 31–46.

    Article  CAS  PubMed  Google Scholar 

  46. Hülsmann, N., and Habery, M., Phenomena of amoeboid movement. Behaviour of the cell surface ofHyalodicus sinplex Wolfarth-Botterman. Acta protozool.12 (1973) 71–82.

    Google Scholar 

  47. Grebecki, A., Relative motion in Amoeba proteus in respect to the adhesion sites. I. Behaviour of the monotactic forms and the mechanis of fountain phenomenon. Protoplasma123 (1984) 116–124.

    Article  Google Scholar 

  48. Harris, A. K., Cell surface movements related to cell locomotion. Ciba Foundation Symp.14 (1973) 3–26.

    CAS  Google Scholar 

  49. Harris, A. K., Recycling of dissolved plasma membrane components as an explanation of the capping phenomenon. Nature263 (1976) 781–783.

    Article  CAS  PubMed  Google Scholar 

  50. Koch, G. L. E., Microfilament-membrane interactions in the mechanism of capping, in Cell Adhesion and Motility, pp. 425–444. Eds A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.

  51. Oliver, J. M., and Berlin, R. D., Surface and cytoskeletal events regulating leukocyte membrane topography. Semin. Haemat.20 (1983) 282–304.

    CAS  Google Scholar 

  52. Allen, R. D., Biophysical aspects of pseudopodium formation and retraction, in: The Biology of the Amoebae, p. 201. Ed. K. W. Jeon. Academic Press, New York 1973.

    Chapter  Google Scholar 

  53. Boyden, S., The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. exp. Med.115 (1962) 453–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilkinson, P. C., Chemotaxis, 2nd edn. Churchill-Livingstone, Edinburgh 1982.

    Google Scholar 

  55. Weiss, L., The adhesion of cells. Int. Rev. Cytol.9 (1960) 187–225.

    Article  CAS  PubMed  Google Scholar 

  56. Curtis, A. S. G., Timing mechanisms in the specific adhesion of cells. Exp. Cell Res. Suppl.8 (1961) 107–122.

    Article  PubMed  Google Scholar 

  57. Curtis, A. S. G., The Cell Surface. Logos Press and Academic Press, New York 1967.

    Google Scholar 

  58. Obrink, B., Epithelial cell adhesion molecules. Exp. Cell Res.163 (1986) 1–21.

    Article  CAS  PubMed  Google Scholar 

  59. Edelman, G. M., Cell adhesion and the molecular processes of morphogenesis. A. Rev. Biochem.54 (1985) 135–169.

    Article  CAS  Google Scholar 

  60. Ambrose, E. J., The movements of fibrocytes. Exp. Cell Res. Suppl.8 (1961) 54–73.

    Article  PubMed  Google Scholar 

  61. Preston, C. M., and King, C. A., Amoeboid locomotion ofAcanthamoeba castellanii with special reference to cell-substratum interactions. J. gen. Microbiol.130 (1984) 2317–2323.

    CAS  PubMed  Google Scholar 

  62. Jones, P. C. T., A contractile protein model for cell adhesion. Nature212 (1966) 365–369.

    Article  CAS  PubMed  Google Scholar 

  63. Grinnell, F., Cellular adhesiveness and extracellular substrata. Int. Rev. Cytol.53 (1978) 65–144.

    Article  CAS  PubMed  Google Scholar 

  64. Lackie, J. M., and Smith, R. P. C., Interactions of leukocytes and endothelium, in: Cell Adhesion and Motility, pp. 235–272. Eds A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.

  65. Smith, G. S., and Lumsden, J. A., Review of neutrophil adherence, chemotaxis, phagocytosis and killing. Vet. Immun. Immunopath.4 (1983) 177–236.

    Article  CAS  Google Scholar 

  66. Wilkinson, P. C., and Lackie, J. M., The adhesion, migration and chemotaxis of leukocytes in inflammation. Curr. Top. Path.68 (1979) 47–88.

    Article  CAS  Google Scholar 

  67. Keller, H. U., Barandun, S., Kistler, P., and Ploem, J. S., Locomotion and adhesion of neutrophil granulocytes. Exp. Cell Res.122 (1979) 351–362.

    Article  CAS  PubMed  Google Scholar 

  68. Schreiner, A., and Hopen, G., Adhesion and locomotion of human leukocytes in vitro; importance of protein coating; effect of lidocain, ethanol and endotoxin. Acta path. microbiol. scand., Sect. C87 (1979) 333–340.

    CAS  Google Scholar 

  69. English, D., and Gabig, T. D., Differentiation and cellular processes involved in the induction and maintenance of stimulated neutrophil adherence. Blood67 (1986) 1314–1322.

    Article  CAS  PubMed  Google Scholar 

  70. Gallin, I., Leukocyte adherence-related glycoproteins LFA-1, Mo-1, and p 150, 95: a new group of monoclonal antibodies, a new disease, and a possible opportunity to understand the molecular basis of leukocyte adherence. J. infect. Dis.152 (1985) 661–664.

    Article  CAS  PubMed  Google Scholar 

  71. Keizer, G. D., Borst, J., Figdor, C. G., Spits, H., Miedema, F., Terhost, C., and De Vries, J. E., Biochemical and functional characteristics of the human leukocyte membrane antigen family LFA-1, Mo-1 and p 150,95. Eur. J. Immun.15 (1985) 1142–1148.

    Article  CAS  Google Scholar 

  72. Springer, T. A., Miller, L. J., and Anderson, D. C., p 150, 95, the third member of the MAC-1, LFA-1 human leukocyte adhesion glycoprotein family. J. Immun.136 (1986) 240–245.

    Article  CAS  PubMed  Google Scholar 

  73. Rees, D. A., Badley, R. A., and Woods, A., Relationships between actomyosin stress fibres and some cell surface receptors in fibroblast adhesion, in: Cell Adhesion and Motility, pp. 389–423. Eds A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.

  74. Taylor, A. C., Attachment and spreading of cells in culture. Exp. Cell Res. Suppl.8 (1961) 154–173.

    Article  PubMed  Google Scholar 

  75. Harris, A., Behaviour of cultured cells on substrata of variable adhesiveness. Exp. Cell Res.77 (1973) 285–297.

    Article  CAS  PubMed  Google Scholar 

  76. Gail, M., Time lapse studies on the motility of fibroblasts in tissue culture. Ciba Foundation Symp.14 (1973) 287–301.

    CAS  Google Scholar 

  77. Gingell, D., and Vince, S., A physical theory of cell-cell and cell-substratum interactions, in: Cell Adhesion and Motility, pp. 39–64. Eds A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.

  78. Rich, A., and Harris, A. K., Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. J. Cell Sci.50 (1981) 1–7.

    Article  CAS  PubMed  Google Scholar 

  79. Ramsey, W. S., Hertl, W., Nowlan, E. D., and Binkowski, N. J., Surface treatments and cell attachments. In Vitro20 (1984) 802–808.

    Article  CAS  PubMed  Google Scholar 

  80. Vasiliev, J. M., and Gelfand, I. M., Interactions of normal and neoplastic fibroblasts with the substratum. Ciba Foundation Symp.14 (1973) 311–328.

    CAS  Google Scholar 

  81. Birchmeier, W., Fibroblast's focal contacts. Trends biochem. Sci.6 (1981) 234–237.

    Article  CAS  Google Scholar 

  82. Verschueren, H., Interference reflection microscopy in cell biology: methodology and application. J. Cell Sci.75 (1985) 279–301.

    Article  CAS  PubMed  Google Scholar 

  83. Vasiliev, J. M., Spreading and locomotion of tissue cells: factors controlling the distribution of pseudopods. Phil. Trans. R. Soc. Lond.B299 (1982) 159–168.

    Article  CAS  Google Scholar 

  84. Grinnell, F., and Geiger, B., Interaction of fibronectin-coated beads with attached and spread fibroblasts. Exp. Cell Res.162 (1986) 449–461.

    Article  CAS  PubMed  Google Scholar 

  85. Damsky, C. H., Knudsen, K. A., Bradley, D., Buck, A. C., and Horwitz, A. F., Distribution of the cell substratum attachment (CSAT) antigen on myogenic and fibroblastic cells in culture. J. Cell Biol.100 (1985) 1528–1539.

    Article  CAS  PubMed  Google Scholar 

  86. Bignold, L. P., Crawling-like movements of polymorphonuclear leukocytes in plasma are not a good index of their motility in microporous cellulose acetate membrane. Cell Biol. Int. Rpts10 (1986) 535–543.

    Article  CAS  Google Scholar 

  87. Curtis, A. S. G., and Büültjens, T. E. J., Cell adhesion and locomotion. Ciba Foundation Symp.14 (1973) 171–179.

    CAS  Google Scholar 

  88. Wilkinson, P. C., Haston, W. S., and Shields, J. M., Some determinants of the locomotory behaviour of phagocytes and lymphocytes in vitro. Clin. exp. Immun.50 (1982) 461–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zigmond, S. H., Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol.75 (1977) 606–616.

    Article  CAS  PubMed  Google Scholar 

  90. Haston, W. S., and Shields, J. M., Neutrophil leukocyte chemotaxis: a simplified assay for measuring polarising responses to chemotactic factors. J. immun. Meth.81 (1985) 229–237.

    Article  CAS  Google Scholar 

  91. McCutcheon, M., Chemotaxis in leukocytes. Physiol. Rev.26 (1946) 319–336.

    Article  CAS  PubMed  Google Scholar 

  92. Ramsey, W. S., Analysis of individual leukocyte behaviour during chemotaxis. Exp. Cell Res.70 (1972) 129–139.

    Article  CAS  PubMed  Google Scholar 

  93. Griffin, F. M., Griffin, J. A., and Silverstein, S. C., Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. exp. Med.144 (1976) 788–809.

    Article  PubMed  Google Scholar 

  94. Stossel, T. P., Phagocytosis, Progr. clin. Biol. Res.13 (1977) 87–102.

    CAS  Google Scholar 

  95. Hyman, L. H., Metabolic gradients in Amoeba and their relationship to the mechanism of amoeboid movement. J. exp. Zool.24 (1917) 55–99.

    Article  CAS  Google Scholar 

  96. Bovee, E. C., and Jahn, T. L., Locomotion and behaviour, in: The Biology of the Amoebae, pp. 249–290. Ed. K. W. Joen. Academic Press, New York 1973.

    Chapter  Google Scholar 

  97. Stossel, T. P., The structure of cortical cytoplasm, Phil. Trans. R. Soc. Lond.B299 (1982) 275–289.

    Article  CAS  Google Scholar 

  98. Stossel, T. P., Hartwig, J. H., Yin, H. L., Southwick, F. S., and Zaner, K. S., The motor of leukocytes. Fedn Proc.43 (1984) 2760–2763.

    CAS  Google Scholar 

  99. Southwick, F. S., and Stossel, T. P., Contractile proteins in leukocyte function. Semin. Haemat.20 (1983) 305–321.

    CAS  Google Scholar 

  100. Pollard, T. D., Polymerization of ADP-actin. J. Cell Biol.99 (1984) 769–777.

    Article  CAS  PubMed  Google Scholar 

  101. Harris, H., Gel models for cell motility. Nature308 (1984) 721.

    Article  Google Scholar 

  102. Szent-Gyori, A., Chemistry of Muscular Contraction. Academic Press, New York 1947.

    Google Scholar 

  103. Goldacre, R. J., and Lorch, I. J., Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movement and osmotic work. Nature166 (1950) 497–500.

    Article  CAS  PubMed  Google Scholar 

  104. Pollard, T. D., Progress in understanding amoeboid movement at the molecular level, in: The Biology of the Amoebae, p. 291. Ed. K. W. Jeon. Academic Press, New York 1973.

    Chapter  Google Scholar 

  105. Hartwig, J. H., Niederman, R., and Lind, S. E., Cortical actin structures and their relationship to mammalian cell movements. Subcell. Biochem.11 (1985) 1–49.

    Article  CAS  PubMed  Google Scholar 

  106. Yumura, S., Mori, H., and Fukui, Y., Localization of actin and myosin for the study of ameboid movement in Dictostelium using improved immunofluorescence. J. Cell Biol.99 (1984) 894–899.

    Article  CAS  PubMed  Google Scholar 

  107. Trueman, E. R., and Jones, H. D., Crawling and burrowing, in: Mechanics and Energetics of Animal Locomotion, pp 204–221. Eds R. Alexander and G. Goldspink, Chapman and Hall, London 1977.

    Google Scholar 

  108. Huxley, H. E., Muscular contraction and cell motility, Nature243 (1973) 445–449.

    Article  CAS  PubMed  Google Scholar 

  109. Dunn, G. A., Mechanisms of fibroblast locomotion, in: Cell Adhesion and Motility, pp. 409–424. Eds. A. S. G. Curtis and J. D. Pitts. Cambridge University Press, 1980.

  110. Schwartz, M. A., and Luna, E. J., Binding and assembly of actin filaments by plasma membranes fromDictyostelium discoideum. J. Cell Biol.102 (1986) 2067–2075.

    Article  CAS  PubMed  Google Scholar 

  111. Kavanau, J. L., A new theory of amoeboid locomotion. J. theor. Biol.4 (1963) 124–141.

    Article  CAS  PubMed  Google Scholar 

  112. Watson, J. D. (Ed.), Organization of the Cytoplasm. Cold Spring Harb. Symp. quant. Biol.46 (1982).

  113. Porter, K. (Ed.), Aqueous environment of the cytomatrix. J. Cell Biol.99 (1984) 167s–196s.

    Google Scholar 

  114. Oster, G. F., On the crawling of cells. J. Embryol. exp. Morph.83 suppl. (1984) 329–364.

    PubMed  Google Scholar 

  115. Holzapfel, G., Wehland, G., and Weber, K., Calcium control of actin-myosin based contraction in Triton models of mouse 3T3 fibroblasts is mediated by the myosin light chain kinase (MLCK)-calmodulin complex. Exp. Cell Res.148 (1983) 117–126.

    Article  CAS  PubMed  Google Scholar 

  116. Strohmeier, R., and Bereiter-Hahn, J., Control of cell shape and locomotion by external calcium. Exp. Cell Res.154 (1984) 412–420.

    Article  CAS  PubMed  Google Scholar 

  117. Sklar, L. A., Omann, G. M., and Painter, R. G., Relationship of actin polymerization and depolymerization to light scattering in human neutrophils: dependence on receptor occupancy and intracellular Ca++. J. Cell Biol.101 (1985) 1161–1166.

    Article  CAS  PubMed  Google Scholar 

  118. Pies, N. J., and Wohlfarth-Botterman, N.-E., Reactivation of a cell-free model fromPhysarum polycephalum: studies on cryosections indicate an inhibitory effect of Ca++ on cytoplasmic actomyosin contraction. Eur. J. Cell Biol.40 (1986) 139–149.

    CAS  PubMed  Google Scholar 

  119. Sha'afi, R. I., Shefcyk, J., Yassin, R., Molski, T. F. P., Volpi, M., Naccache, P. H., White, J. R., Feinstein, M. B., and Becker, E. L., Is a rise in intracellular concentration of free calcium necessary or sufficient for stimulated cytoskeletal-associated actin? J. Cell Biol.102 (1986) 1459–1463.

    Article  CAS  PubMed  Google Scholar 

  120. McNeil, P. L., Swanson, J. A., Wright, S. D., Silverstein, S. C., and Taylor, D. L., Fc-receptor-mediated phagocytosis occurs in macrophages without an increase in average [Ca++]. J. Cell Biol.102 (1986) 1586–1592.

    Article  CAS  PubMed  Google Scholar 

  121. Haston, W. S., and Shields, J. M., Signal transduction in human neutrophil leukocytes: effects of external Na+ and Ca2+ on cell polarity. J. Cell Sci.82 (1986) 249–261.

    Article  CAS  PubMed  Google Scholar 

  122. Allison, A. C., The role of microfilaments and microtubules in cell movement. Ciba Foundation Symp.14 (1973) 109–142.

    CAS  Google Scholar 

  123. Weatherbee, J. A., Membranes and cell movement: interactions of membranes with the proteins of the cytoskeleton. Int. Rev. Cytol. Suppl.12 (1981) 113–176.

    Google Scholar 

  124. Oliver, J. M., and Berlin, R. D., Mechanisms that regulate the structural and functional architecture of cell surfaces. Int. Rev. Cytol.74 (1982) 55–94.

    Article  CAS  PubMed  Google Scholar 

  125. Vasiliev, J. M., Spreading of non-transformed and transformed cells. Biochim. biophys. Acta780 (1985) 21–65.

    CAS  PubMed  Google Scholar 

  126. Pollard, T. D., and Cooper, J. A., Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. A. Rev. Biochem.55 (1986) 987–1035.

    Article  CAS  Google Scholar 

  127. Bennett, H., and Condeelis, J., A gradient in the density of intramembrane particles is formed during capping induced by concavalin-A. J. Cell Sci.83 (1986) 61–76.

    Article  CAS  PubMed  Google Scholar 

  128. Klebanoff, S. J., and Clark, R. A., The Neutrophil, p. 163. North Holland, Amsterdam 1976.

    Google Scholar 

  129. Singer, D. J., and Nicholson, G. L., The fluid mosaic model of the structure of cell membranes. Cell membranes are viewed as twodimensional solutions of oriented globular proteins and lipids. Science175 (1972) 720–731.

    Article  CAS  PubMed  Google Scholar 

  130. de Petris, S., and Raff, M. C., Fluidity of the plasma membrane and its implications for cell movement. Ciba Foundation Symp.14 (1973) 27–40.

    Google Scholar 

  131. Daniels, E. W., Ultrastructure, in: Biology of the Amoeba, pp. 125–169. Ed. K. W. Jeon. Academic Press, New York 1973.

    Chapter  Google Scholar 

  132. Szent-Gyori, A., Bioenergetics. Academic Press, New York 1957.

    Google Scholar 

  133. Taylor, D. L., and Fechheimer, M., Cytoplasmic structure and contractility: the solation-coupling hypothesis. Phil. Trans. R. Soc. Lond.B299 (1982) 185–196.

    Article  CAS  Google Scholar 

  134. Grebecki, A., Two-directional pattern of movements in the cell surface ofAmoeba proteus. J. Cell Sci.83 (1986) 23–36.

    Article  CAS  PubMed  Google Scholar 

  135. Carter, S. B., Principles of cell motility: the direction of cell movement and cancer invasion. Nature208 (1965) 1183–1187.

    Article  CAS  PubMed  Google Scholar 

  136. Carter, S. B., Haptotaxis and the mechanism of cell motility. Nature213 (1967) 256–261.

    Article  CAS  PubMed  Google Scholar 

  137. Kaplan, S. S., Pesando, J. M., Basford, R. E., and Zdziarski, U. E., Monoclonal antibodies to CALLA do not alter polymorphonuclear functions. Am. J. Haemat.23 (1986) 209–215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bignold, L.P. Amoeboid movement: A review and proposal of a ‘membrane ratchet’ model. Experientia 43, 860–868 (1987). https://doi.org/10.1007/BF01951643

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01951643

Key words