Skip to main content
Log in

Life without oxygen: what can and what cannot?

  • Published:
Experientia Aims and scope Submit manuscript

Summary

The basic principles involved in the biotransformation of organic carbon compounds in the absence of molecular oxygen (dioxygen) are presented in this paper. The role of various electron acceptors during the breakdown of organic compounds is discussed and the metabolic end-products expected are summarized. The different biochemical possibilities and strategies for the anaerobic degradation of organic matter and the metabolic response of some organisms to anaerobiosis are elucidated. Positive and negative effects of anaerobiosis on environmentally relevant processes and their influence on man and on animals are reviewed. Finally, some examples of the biotechnological application of anaerobic processes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abelson, P. H., Greenhouse role of trace gases. Science231 (1986) 1233.

    Article  CAS  PubMed  Google Scholar 

  2. Alexander, M., Introduction to Soil Microbiology, 2nd edn. John Wiley & Sons Inc., New York 1961.

    Google Scholar 

  3. Chameides, W. L., Increasing atmospheric methane. Nature301 (1983) 568.

    Article  Google Scholar 

  4. Claassen, P. A. M., and Zehnder, A. J. B., Isocitrate lyase activity inThiobacillus versutus grown anaerobically on acetate and nitrate. J. gen. Microbiol.132 (1986) in press.

  5. Cole, J. A., and Brown, C. M., Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol. Lett.7 (1980) 65–72.

    Article  CAS  Google Scholar 

  6. Crutzen, P. J., SST's a threat to the earth's ozone shield. Ambio3 (1972) 201–210.

    Google Scholar 

  7. Ehrlich, H. L., Geomicrobiology. Marcel Dekker, Inc., New York/ Basel 1981.

    Google Scholar 

  8. Fedorak, P. M., and Hrudey, S. E., Anaerobic treatment of phenolic coal conversion wastewater in semi continuous cultures. Wat. Res.20 (1986) 113–122.

    Article  CAS  Google Scholar 

  9. Gujer, W., and Zehnder, A. J. B., Conversion processes in anaerobic digestion. Wat. Sci. Techn.15 (1983) 127–167.

    Article  CAS  Google Scholar 

  10. Hartman-Hansen, M., Ingvorsen, K., and Barker Jørgensen, B., Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnol. Oceanogr.23 (1978) 68–76.

    Article  Google Scholar 

  11. Hochachka, P. W., Living without Oxygen. Closed and Open Systems in Hypoxia Tolerance. Harvard University Press, Cambridge, Mass. 1980.

    Book  Google Scholar 

  12. Hungate, R. E., Anaerobic biotransformation of organic matter, in: Bacteria in Nature, vol. 1, pp. 39–95. Eds E. R. Leadbetter and J. S. Poindexter. Plenum Press, New York 1985.

    Chapter  Google Scholar 

  13. Ingledew, J. W., and Poole, R. K., The respiratory chains ofEscherichia coli. Microbiol. Rev.48 (1984) 222–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaplan, W., Sources and sinks of nitrous oxide, in: Current Perspectives in Microbial Ecology, pp. 478–483. Eds M. J. Klug and C. A. Reddy. ASM, Washington, D. C. 1984.

    Google Scholar 

  15. Kelly, C. A., and Rudd, J. W. M., Epilimnetic sulfate reduction and its relationship to lake acidification. Biogeochemistry1 (1984) 63–77.

    Article  CAS  Google Scholar 

  16. Knowles, R., Denitrification. Microbiol. Rev.46 (1982) 43–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lacis, A., Hansen, G., Lee, P., Michell, T., and Lebedoff, S., Greenhouse effect of trace gases, 1970–1980. Geophys. Res. Lett.8 (1981) 1035–1038.

    Article  CAS  Google Scholar 

  18. Luebs, R. E., Davis, K. R., and Laag, A. E., Enrichment of the atmosphere with nitrogen compounds volatilized from a large dairy area. J. Envir. Qual.2 (1973) 137–141.

    Article  CAS  Google Scholar 

  19. Lynch, J. M., Gunn, K. B., and Panting, L. M., On the concentration of acetic acid in straw and soil. Pl., Soil56 (1980) 93–98.

    Article  CAS  Google Scholar 

  20. Margulis, L., Origin of Eukoryotic Cells. Yale University Press, New Haven 1970.

    Google Scholar 

  21. McCarty, P. L., One hundred years of anaerobic treatment, in: Anaerobic Digestion 1981, pp. 3–22. Eds D. E. Hughes et al. Elsevier, Amsterdam 1982.

    Google Scholar 

  22. McDonald, P., The Biochemistry of Silage. John Wiley & Sons Ltd., Chichester 1981.

    Google Scholar 

  23. McNeil, B., and Kristiansen, B., The acetone butanol fermentation. Adv. appl. Microbiol.31 (1986) 61–92.

    Article  CAS  Google Scholar 

  24. Morris, J. G., The physiology of obligate anaerobiosis. Adv. Microbiol. Physiol.12 (1975) 169–246.

    Article  CAS  Google Scholar 

  25. Ohisa, N., Yamaguchi, M., and Kurihova, N., Lindane degradation by cell-free extracts ofClostridium rectum. Archs Microbiol.125 (1980) 221–225.

    Article  CAS  Google Scholar 

  26. Postgate, J. R., The Sulphate-Reducing Bacteria. Cambridge University Press, Cambridge 1984.

    Google Scholar 

  27. Poth, M., and Focht, D. D.,15N kinetic analysis of N2O production byNitrosomonas europaea: an examination of nitrifier denitrification. Appl. envir. Microbiol.49 (1985) 1134–1141.

    Article  CAS  Google Scholar 

  28. Robertson, L. A., and Kuenen, J. G., Aerobic denitrification: a controversy revived. Archs Microbiol.139 (1984) 351–354.

    Article  CAS  Google Scholar 

  29. Rogers, P., Genetics and biochemistry ofClostridium relevant to development of fermentation processes. Adv. appl. Microbiol.31 (1986) 1–60.

    Article  CAS  Google Scholar 

  30. Rose, A. H., The microbiological production of food and drink. Scient. Am.245 (1981) 95–104.

    Article  Google Scholar 

  31. Rosswall, T., Exchange of nutrient between atmosphere and vegetation. Agro-Ecosystems4 (1977) 296–302.

    Google Scholar 

  32. Rudd, J. W. M., and Hamilton, R. D., Methane cycling in Lake 227 in perspectives with some components of carbon and oxygen cycles. Arch. Hydrobiol. Beil.12 (1979) 115–122.

    CAS  Google Scholar 

  33. Schopf, J. W., The evolution of the earliest cells. Scient. Am.239 (1978) 110–139.

    Article  CAS  Google Scholar 

  34. Schraa, G., and Zehnder, A. J. B., Biodegradation of chlorinated compounds, in: Organic Micropollutants in the Aquatic Environment, pp. 278–291. Eds A. Bjorseth and G. Angeletti. D. Reidel Publishing Company, Dordrecht 1986.

    Chapter  Google Scholar 

  35. Schraa, G., van der Meer, J. R., van Neerven, A. R. W., Colberg, P. J., and Zehnder, A. J. B., Microbial transformation of micropollutants, in: Microbial Communities in Soil, pp. 315–326. Eds V. Jensen, A. Kjøller and L. H. Sørensen. Elsevier, London-New York 1986.

    Google Scholar 

  36. Seiler, W., Contribution of biological processes to the global budget of CH4 in the atmosphere, in: Current Perspectives in Microbial Ecology, pp. 468–477. Eds M. J. Klug and C. A. Reddy. ASM, Washington, D. C. 1984.

    Google Scholar 

  37. Söderlund, R., and Svensson, B. H., The global nitrogen cycle, in: Nitrogen, Phosphorus and Sulphur-Global Cycles. SCOPE Report No 7. Ecol. Bull. (Stockholm), vol. 22, pp. 23–73. Eds B. H. Svensson and R. Söderlund, 1976.

  38. Stumm, W., What is the pε of the sea? Thalassia Jugoslavica14 (1978) 197–208.

    Google Scholar 

  39. Suflita, J. M., Horowitz, A., Schelton, D. R., and Tiedje, J. M., Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science218 (1982) 1115–1117.

    Article  CAS  PubMed  Google Scholar 

  40. Tsuchiya, T., and Yamaha, T., Reductive dechlorination of 1,2,4-trichlorobenzene byStaphylococcus epidermis isolated from intestinal contents of rats. Agric. biol. Chem.48 (1984) 1545–1550.

    CAS  Google Scholar 

  41. Vogel, T. M., and McCarty, P. L., Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. envir. Microbiol.49 (1985) 1080–1083.

    Article  CAS  Google Scholar 

  42. Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T., and Hansen, J. E., Greenhouse effects due to man-made perturbations of trace gases. Science194 (1976) 685–690.

    Article  CAS  PubMed  Google Scholar 

  43. Widdel, F., Microbiology and ecology of sulfate- and sulfur-reducting bacteria, in: Biology of Anaerobic Microorganisms. Ed. A. J. B. Zehnder. Wiley, New York (1986) in press.

    Google Scholar 

  44. Williams, R. J., and Evans, W. C., The metabolism of benzoate byMoraxella species, through anaerobic nitrate respiration. Evidence for a reductive pathway. Biochem. J.148 (1975) 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zehnder, A. J. B., The carbon cycle, in: Handbook of Environmental Chemistry, vol. 1: Part B, pp. 83–110. Ed. O. Hutzinger. Springer-Verlag, Berlin 1982.

    Google Scholar 

  46. Zehnder, A. J. B., and Brock, T. D., Methane formation and methane oxidation by methanogenic bacteria. J. Bact.137 (1979) 420–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zehnder, A. J. B., and Colberg, P. J., Anaerobic biotransformation of organic carbon compounds, in: Microbial Communities in Soil, pp. 275–291. Eds V. Jensen, A. Kjøller and L. H. Sørensen. Elsevier, London-New York 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehnder, A.J.B., Svensson, B.H. Life without oxygen: what can and what cannot?. Experientia 42, 1197–1205 (1986). https://doi.org/10.1007/BF01946391

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01946391

Key words

Navigation