Skip to main content
Log in

Potassium-dependent, bipolar gating of K+ channels in guard cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Guard cells of higher plants control transpirational water loss and gas exchange for photosynthesis by opening and closing pores in the epidermis of the leaf. To power these turgordriven movements, guard cells accumulate (and lose) 200 to 400mm (1 to 3 pmol/cell) K+, fluxes thought to pass through K+ channels in the guard cells plasma membrane. Steady-state current-voltage (I–V) relations of intactVicia guard cells frequently show large, outward-going currents at potentials approaching 0 mV. Since this current could be carried by K+ channels, its pharmacology and dependence on external K+ (K + v ) has been examined under voltage clamp over an extended potential range. Measurements were carried out on cells which showed little evidence of primary “electrogenic” transport, thus simplifying analyses. Clamping these cells away from the free-running membrane potential (V m ) revealed an outward-rectifying current with instantaneous and time-dependent components, and sensitive to the K+ channel blocker tetraethylammonium chloride. The current declined also under metabolic blockade with NaCN and in the presence of diethylstilbesterol, responses which were attributed to secondary effects of these inhibitors. The putative K+ current rose with voltage positive toV m but it decayed over two voltage ranges, one negative toV m and one near +100 mV, to give steady-stateI–V relations with two regions of negative (slope) conductance. Voltage-dependent and kinetic characteristics of the current were affected by K + v and followed the K+ equilibrium potential. Against a (presumably) low background of primary ion transport, the K+ current contributed appreciably to charge balance atV m in 0.1mm as well as in 1 to 10mm K + v . Thus, gating of these K+ channels compensates for the prevailing K+ conditions to ensure net K+ movement out of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C. 1971. The interaction of tetraethylammonium ion derivatives with potassium channels of giant axons.J. Gen. Physiol. 58:413–437

    PubMed  Google Scholar 

  • Armstrong, C. 1975. Ionic pores, gates and gating currents.Q. Rev. Biophys. 7:179–210

    Google Scholar 

  • Armstrong, C., Matteson, D. 1986. The role of calcium ions in the closing of K+ channels.J. Gen. Physiol. 87:817–832

    PubMed  Google Scholar 

  • Barry, P.H. 1970. Volume flows and pressure changes during an action potential in cells ofChara australis. II. Theoretical considerations.J. Membrane Biol. 3:335–371

    Google Scholar 

  • Beilby, M.J. 1984. Current-voltage characteristics of the proton pump atChara plasmalemma: I. pH dependence.J. Membrane Biol. 81:113–125

    Google Scholar 

  • Beilby, M.J. 1986. Factors controlling the K+ conductance inChara.J. Membrane Biol. 93:187–193

    Google Scholar 

  • Bezanilla, F., Armstrong, C.M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.J. Gen. Physiol. 60:588–608

    PubMed  Google Scholar 

  • Bezanilla, F., Caputo, C., DiPolo, R., Rojas, H. 1986. Potassium conductance of the squid giant axon is modulated by ATP.Proc. Natl. Acad. Sci. USA 83:2743–2745

    PubMed  Google Scholar 

  • Bisson, M.A. 1986. Inhibitors of proton pumping: Effect on passive proton transport.Plant. Physiol. 81:55–59

    Google Scholar 

  • Blatt, M.R. 1987a. Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chloride leakage from microelectrodes.Planta 170:272–287

    Google Scholar 

  • Blatt, M.R. 1987b. Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “electrogenic” transport revealed by current-voltage and difference-current-voltage analysis.J. Membrane Biol. 98:257–274

    Google Scholar 

  • Blatt, M.R. 1987c. Fusicoccin, K+ channels and stomatal closure.Plant Physiol. 83:174A

    Google Scholar 

  • Blatt, M.R., Rodriguez-Navarro, A., Slayman, C.L. 1987. Potassium-proton symport inNeurospora: Kinetic control by pH and membrane potential.J. Membrane Biol. 98:169–189

    Google Scholar 

  • Blatt, M.R., Slayman, C.L. 1983. KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell.J. Membrane Biol. 72:223–234

    Google Scholar 

  • Blatz, A., Magleby, K. 1983. Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle.Biophys. J. 43:237–241

    PubMed  Google Scholar 

  • Briggs, G.E., Hope, A.B., Robertson, R.N. 1961. Electrolytes and Plant Cells. Blackwells, Oxford

    Google Scholar 

  • Byerly, L., Meech, R., Moody, W. 1984. Rapidly activating hydrogen ion currents in perfused neurons of the snail,Lymnaea stagnalis.J. Physiol. (London) 351:199–216

    Google Scholar 

  • Ciani, S., Krasne, S., Miyazaki, S., Hagiwara, S. 1978. A model for anomalous rectification: Electrochemical-potential-dependent gating of membrane channels.J. Membrane Biol. 44:103–134

    Google Scholar 

  • Cheeseman, J., LaFayette, P., Gronewald, J., Hanson, J. 1980. Effect of ATPase inhibitors on cell potential and K+ influx in corn roots.Plant Physiol. 65:1139–1145

    Google Scholar 

  • Coleman, H.A., Findlay, G.P. 1985. Ion channels in the membrane ofChara inflata.J. Membrane Biol. 83:109–118

    Google Scholar 

  • Colombini, M. 1979. A candidate for the permeability pathway of the outer mitochondrial membrane.Nature (London) 279:643–645

    Google Scholar 

  • Edwards, K., Pickard, B.G. 1987. Detection and transduction of physical stimuli in plants.In: The Cell Surface in Signal Transduction. E. Wagner, H. Greppin, and B. Millet, editors. pp. 41–66. NATO-ASI Series H12. Springer, Berlin

    Google Scholar 

  • Felle, H. 1981. A study of the current-voltage relationships of electrogenic active and passive membrane elements inRiccia fluitans.Biochim. Biophys. Acta 646:151–160

    Google Scholar 

  • Felle, H. 1982. Effects of fusicoccin upon membrane potential, resistance and current-voltage characteristics in root hairs ofSinapis alba.Plant. Sci. Lett. 25:219–225

    Google Scholar 

  • Finkelstein, A., Mauro, A. 1977. Physical principles and formalisms of electrical excitability.In: Handbook of Physiology. Vol. 1, pp. 383–441. E. Kandel, editor. APS, Bethesda, Maryland

    Google Scholar 

  • Fischer, R., Hsiao, T. 1968. Stomatal opening in isolated epidermal strips ofVicia faba. II. Responses to KCl concentration and the role of potassium absorption.Plant Physiol. 43:1953–1958

    Google Scholar 

  • French, R.J., Wells, J. 1977. Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon.J. Gen. Physiol. 70:707–724

    PubMed  Google Scholar 

  • Gaffey, C., Mullins, L. 1958. Ion fluxes during the action potential inChara.J. Physiol. (London) 144:505–524

    Google Scholar 

  • Gradmann, D. 1975. Analog circuit of theAcetabularia membrane.J. Membrane Biol. 25:183–208

    Google Scholar 

  • Gradmann, D., Hansen, U.P., Long, W.S., Slayman, C.L., Warncke, J. 1978. Current-voltage relationships for the plasma membrane and its principal electrogenic pump inNeurospora crassa: I. Steady-state conditions.J. Membrane Biol. 3:333–367

    Google Scholar 

  • Guharay, F., Sachs, F. 1984. Stretch activated single ion-channel currents in tissue-cultured embryonic chick skeletal muscle.J. Physiol. (London) 352:685–701

    Google Scholar 

  • Gustin, M., Martinac, B., Saimi, Y., Culbertson, M., Kung, C. 1986. Ion channels in yeast.Science 233:1195–1197

    PubMed  Google Scholar 

  • Hagiwara, S. 1983. Membrane Potential-Dependent Ion Channels in Cell Membrane. Raven, New York

    Google Scholar 

  • Harold, F.M. 1987. The Vital Force: A Study of Bioenergetics. Freeman, New York

    Google Scholar 

  • Hille, B. 1984. Ion Channels of Excitable Membranes. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Hille, B., Schwarz, W. 1978. Potassium channels as multi-ion single-file pores.J. Gen. Physiol. 72:409–442

    PubMed  Google Scholar 

  • Hodgkin, A., Huxley, A.F., Katz, B. 1952. Measurement of current-voltage relations in the membrane of the giant axon ofLoligo.J. Physiol. (London) 116:424–448

    Google Scholar 

  • Homblé, F., Ferrier, J., Dainty, J. 1987. Voltage-dependent K+ channel in protoplasmic droplets ofChara corallina.Plant Physiol. 83:53–57

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1975. The Physiology of Giant Algal Cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Horie, M., Irisawa, H., Noma, A. 1987. Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells.J. Physiol. (London) 387:251–272

    Google Scholar 

  • Kitasato, H. 1973. K+ permeability ofNitella clavata in the depolarised state.J. Gen. Physiol. 62:535–549

    PubMed  Google Scholar 

  • Kolb, H.A., Köhler, K., Martinoia, E. 1987. Single potassium channels in membranes of isolated mesophyll barley vacuoles.J. Membrane Biol. 95:163–169

    Google Scholar 

  • Laver, D.R., Walker, N.A. 1987. Steady-state voltage-dependent gating and conduction kinetics of single K+ channels in the membrane of cytoplasmic drops ofChara australis.J. Membrane Biol. 100:31–42

    Google Scholar 

  • Lühring, H. 1986. Recording of single K+ channels in the membrane of cytoplasmic drop ofChara australis.Protoplasma 133:19–28

    Google Scholar 

  • Lux, H.D., Hofmeier, G. 1982. Properties of a calcium- and voltage-activated potassium current inHelix pomatia neurons.Pfluegers Arch. 394:61–69

    Google Scholar 

  • MacRobbie, E.A.C. 1987. Stomatal guard cells.In: Ion Transport in Plant Cells and Tissues. J. Hall and D.A. Baker, editors. Pitman, London (in press)

    Google Scholar 

  • Marquardt, D. 1963. An algorithm for least-squares estimation of nonlinear parameters.J. Soc. Ind. Appl. Math. 11:431–441

    Google Scholar 

  • Marrè, E. 1985. Fusicoccin- and hormone-induced changes of H+ extrusion: Physiological implications.In: Frontiers of Membrane Research in Agriculture. J. St. John, E. Berlin, and P. Jackson, editors. pp. 439–460. Rowman and Allanheld, Ottowa

    Google Scholar 

  • Meech, R.W., Standen, N.B. 1975. Potassium activation inHelix aspersa neurons under voltage clamp: A component mediated by calcium influx.J. Physiol. (London) 249:211–239

    Google Scholar 

  • Moody, W.J., Hagiwara, S. 1982. Block of inward rectification by intracellular H+ in immature oocytes of the starfishMediaster aequalis.J. Gen. Physiol. 79:115–130

    PubMed  Google Scholar 

  • Moran, N., Ehrenstein, G., Iwasa, K., Bare, C., Mischke, C. 1984. Ion channels in plasmalemma of wheat protoplasts.Science 226:935–938

    Google Scholar 

  • Mueller, R., Rudin, D. 1968. Resting and action potentials in experimental bimolecular lipid membranes.J. Theor. Biol. 18:222–258

    PubMed  Google Scholar 

  • Oda, K. 1962. Polarised and depolarised states of the membrane inChara braunii, with special reference to the transition between the two states.Tohoku Univ. Sci. Report IV 28:1–16

    Google Scholar 

  • Outlaw, W. 1983. Current concepts on the role of potassium in stomatal movements.Physiol. Plant. 59:302–311

    Google Scholar 

  • Robinson, R., Stokes, R. 1959. Electrolyte Solutions. Butterworths, London

    Google Scholar 

  • Rodriguez-Navarro, A., Blatt, M.R., Slayman, C.L. 1986. A potassium-proton symport inNeurospora crassa.J. Gen. Physiol. 87:649–674

    PubMed  Google Scholar 

  • Sanders, D., Slayman, C.L. 1982. Control of intracellular pH: Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganismNeurospora.J. Gen. Physiol. 80:377–402

    PubMed  Google Scholar 

  • Schauf, C., Wilson, K. 1987. Effects of abscisic acid on K+ channels inVicia faba guard cell protoplasts.Biochem. Biophys. Res. Commun. 145:284–290

    PubMed  Google Scholar 

  • Schroeder, J., Raschke, K., Neher, E. 1987. Voltage dependence of K+ channels in guard cell protoplasts.Proc. Natl. Acad. Sci. USA 84:4190–4112

    PubMed  Google Scholar 

  • Vandenberg, C.A. 1987. Inward rectification of potassium channel in cardiac ventricular cells depends on internal magnesium ions.Proc. Natl. Acad. Sci. USA 84:2560–2564

    PubMed  Google Scholar 

  • Weyers, J.D., Patterson, N.W., Fitzsimons, P.J., Dudley, J.M. 1982. Metabolic inhibitors block ABA-induced stomatal closure.J. Exp. Bot. 33:1270–1278

    Google Scholar 

  • Wille, A., Lucas, W. 1984. Ultrastructural and histochemical studies on guard cells.Planta 160:129–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatt, M.R. Potassium-dependent, bipolar gating of K+ channels in guard cells. J. Membrain Biol. 102, 235–246 (1988). https://doi.org/10.1007/BF01925717

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01925717

Key Words