Skip to main content
Log in

Structures and molecules involved in generation and regulation of biological rhythms in vertebrates and invertebrates

  • Multi-Author Reviews
  • Melatonin and the Light-Dark Zeitgeber in Vertebrates, Invertebrates and Unicellular Organisms
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Melatonin from the retina and the pineal gland functions in neuroendocrine hierarchies. Photoreceptors — eyes and extraretinal — detect light. Oscillators — pineal and suprachiasmatic nuclei — act as pacemakers. Driven neuroendocrine rhythms carry temporal hormone signals throughout the body. Light controls melatonin: light sets the phase of the melatonin rhythm and determines the duration of melatonin synthesis. By these means, circadian rhythms (e.g. in locomotor activity and body temperature) and seasonal rhythms (e.g. in reproduction) are controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, R., Circadian rhythms in adrenal organ cultures. Gegenbaurs morph. Jb. Leipzig117 (1971) 89–98.

    Google Scholar 

  2. Bandurski, R. S., and Nonhebel, H. M., Chapter 1: Auxins, in: Advanced Plant Physiology. Ed. M. B. Wilkins. Pitman, Marshfield 1984.

    Google Scholar 

  3. Binkley, S., Enzyme clock explains circadian phenomena, in: Advances in Pineal Research 3, pp. 107–112. Eds R. Reiter and S. F. Pant. John Libby & Co. Ltd., New York 1989.

    Google Scholar 

  4. Binkley, S., Functions of the pineal gland, in: Avian Endocrinology, pp. 53–74. Ed. A. Epple. Academic Press, New York 1980.

    Google Scholar 

  5. Binkley, S., The pineal: Endocrine and Nonendocrine Function, p. 136. Prentice Hall, Englewood Cliffs, NJ 1988.

    Google Scholar 

  6. Binkley, S., and Geller, E., Pineal N-acetyltransferase in chickens: Rhythm persists in constant darkness. J. comp. Physiol.99 (1975) 67–70.

    Google Scholar 

  7. Binkley, S., Hryshchyshyn, M., and Reilly, K., N-acetyltransferase activity responds to environmental lighting in the eye as well as in the pineal gland. Nature281 (1979) 479–481.

    PubMed  Google Scholar 

  8. Binkley, S., Kluth, E., and Menaker, M., Pineal function in sparrows: circadian rhythm and body temperature. Science174 (1971) 311–314.

    PubMed  Google Scholar 

  9. Binkley, S., MacBride, S., Klein, D., and Ralph, C. L., Regulation of pineal rhythms in chickens: Refractory period and nonvisual light perception. Endocrinology96 (1975) 848–853.

    PubMed  Google Scholar 

  10. Binkley, S., Mosher, K., and White, B. N-acetyltransferase in chick pineal: Maps of light and dark sensitivity. J. Comp. Physiol. B159 (1989) 37–42.

    PubMed  Google Scholar 

  11. Binkley, S., Riebman, J., and Reilly, K., The pineal gland: A biological clockin vitro. Science202 (1978) 1198–1201.

    PubMed  Google Scholar 

  12. Binkley, S., Riebman, J., and Reilly, K., Timekeeping by the pineal gland. Science197 (1977) 1181–1183.

    PubMed  Google Scholar 

  13. Block, G., and Wallace, S., Localization of a circadian pacemaker in the eye of a mollusc,Bulla. Science217 (1982) 155–157.

    Google Scholar 

  14. Brabant, G., Prank, J. F., Ranft, U., Schuermeyer, Th., Wagner, T. O. F., Hauser, H., Kummer, B., Feisterner, H., Hesch, R. D., and von zur Muhlen, A., Physiological regulation of circadian and pulsatile thryotropin secretion in normal man and woman. J. clin. Endocr. Metab.70 (1990) 403–409.

    PubMed  Google Scholar 

  15. Breuer, H., Kaulhausen, H., Muhlbauer, W., Fritzsche, G., and Vetter, H., Circadian rhythm of the renin-angiotensin-aldosterone system, in: Chronobiological Aspects of Endocrinology Symp. Med, pp. 101–109. F. K. Schattauer, Stuttgart 1974.

    Google Scholar 

  16. Colepicolo, P., Camarero, V. C. P. C., and Hastings, J. W., A circadian rhythm in the activity of superoxide dismutase in the photosynthetic algaGonyaulax polyedra. Chronobiol. Int.9 (1992) 266–268.

    PubMed  Google Scholar 

  17. Corrent, G., McAdoo, D., and Eskin, A., Serotonin shifts the phase of the circadian rhythm from theAplysia eye. Science202 (1978) 977–979.

    PubMed  Google Scholar 

  18. Edmunds, L. N., Cell Cycle Clocks. Marcel Dekker, Inc., New York 1984.

    Google Scholar 

  19. Fernstrom, J. D., The influence of circadian variations in plasma amino acid concentrations on monoamine synthesis in the brain, in: Endocrine Rhythms, p. 95. Ed. D. T. Krieger. Raven Press, New York 1979.

    Google Scholar 

  20. Frantz, A. G., Rhythms in prolactin secretion, in: Endocrine Rhythms, p. 177. Ed. D. T. Krieger. Raven Press, New York 1979.

    Google Scholar 

  21. Gaston, S., and Menaker, M., Pineal function: The biological clock in the sparrow? Science160 (1968) 1125–1127.

    PubMed  Google Scholar 

  22. Hiroshige, T., and Wada, S., Modulation of CRF activity in the rat hypothalamus, in: Chronobiological Aspects of Endocrinology, pp. 51–63. Eds J. Aschoff, F. Ceresa, and F. Halberg. F. K. Schattauer Verlag, Stuttgart and New York 1974.

    Google Scholar 

  23. Judd, H. L., Biorhythms of gonadotropins and testicular hormone secretion, in: Endocrine Rhythms, p. 305. Ed. D. T. Krieger. Raven Press, New York 1979.

    Google Scholar 

  24. Klein, D., and Weller, J., Indole metabolism in the pineal gland A circadian rhythm in N-acetyltransferase. Science169 (1970) 1093–1095.

    PubMed  Google Scholar 

  25. Klein, D., and Weller, J., Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science177 (1972) 532–533.

    PubMed  Google Scholar 

  26. Konig, A., and Meyer, A., The effect of continuous illumination on the circadian rhythm of the antidiuretic activity of the rat pineal. J. interdiscipl. Cycle Res.2 (1971) 255–262.

    Google Scholar 

  27. Krieger, D., Allen, W., Rizzo, F., Krieger, H. P., Characterization of the normal pattern of plasma corticosteroid levels. J. clin. Endocr. Metab.32 (1971) 266–284.

    PubMed  Google Scholar 

  28. Logue, F. C., Fraser, W. D., Reilly, St. J., and Besastall, G. H., The circadian rhythm of intact parathyroid hormone (1–84) and nephrogenous cyclic adenosine monophosphate in normal men. J. Endocr.122 (1989) R1-R3; 1989.

    PubMed  Google Scholar 

  29. Markowitz, M. E., Arnaud, S., Rosen, J. F., Thorpy, M., and Saximinarayan, S., Temporal interrelationships between the circadian rhythms of serum parathyroid hormone and calcium concentrations. J. clin. Endocr. Metab.67 (1988) 1068–1073.

    PubMed  Google Scholar 

  30. Markowitz, M. E., Dimartino-Nardi, J., Gasparini, F., Fishman, K., Rosen, J., and Saenger, P., Effects of growth hormone therapy on circadian osteocalcin rhythms in idiopathic short stature. J. clin. Endocr. Metab.69 (1989) 420–425.

    PubMed  Google Scholar 

  31. Menaker, M., Light perception by extra-retinal receptors in the brain of the sparrow. Proceedings, 76th Annual convention, American Psychological Association (1968) 299–300.

  32. Menaker, M., and Underwood, H., Extraretinal photoreception in birds. Photochem. and Photobiol.23 (1976) 299–306.

    Google Scholar 

  33. Menaker, M., and Wisner, S., Temperature-compensated circadian clock in the pineal ofAnolis. Proc. natl Acad. Sci. USA80 (1983) 6119–6121.

    PubMed  Google Scholar 

  34. Moore, R., and Klein, D., Visual pathways and central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase. Brain Res.71 (1974) 17–33.

    PubMed  Google Scholar 

  35. Pierpaoli, W., and Maestroni, G. J. M., Melatonin: A principal neuroimmunoregulatory and anti-stress hormone: Its anti-aging effects. Immun. Lett.16 (1987) 355–362.

    Google Scholar 

  36. Quay, W., Relation of pineal acetylserotonin methyltransferase activity to daily photoperiod and light intensity. Archs Anat. Histol. et Embryol.51 (1968) 567–571.

    Google Scholar 

  37. Quay, W., Rhythmic and light-induced changes in levels of pineal 5-hydroxyindoles in the pigeon (Columbia livia). Gen. comp. Endocr.6 (1966) 371–377.

    PubMed  Google Scholar 

  38. Ralph, C. L., Binkley, S., MacBride, S. E., Klein, D. Regulation of pineal rhythms in chickens: Effects of blinding, constant light, constant dark, and superior cervical ganglionectomy. Endocrinology97 (1975) 1373–1378.

    PubMed  Google Scholar 

  39. Ralph, C. L., Hedlund, L., and Murphy, W. A., Diurnal cycles of melatonin in bird pineal bodies. Comp. Biochem. Physiol.22 (1967) 591–599.

    Google Scholar 

  40. Rebar, R. W., and Yen, S. S. C., Endocrine rhythms and ovarian steroids with reference to reproductive processes, in: Endocrine Rhythms, p. 264. Ed. D. T. Krieger. Raven Press, New York 1979.

    Google Scholar 

  41. Richter, C. P., Sleep and activity, their relation to the 24-hour clock, in: The Psychobiology of Curt Richter, pp. 128–147. Ed. E. Blass. York Press, Baltimore 1967.

    Google Scholar 

  42. Roenneberg, T., and Hastings, J. W., Are the effects of light on phase and period of theGonyaulax clock mediated by different pathways? Photochem. and Photobiol.53 (1991) 525–533.

    Google Scholar 

  43. Schwarz, W., and Gainor, H., Suprachiasmatic nucleus: Use of14C-labeled deoxyglucose uptake as a functional marker. Science197 (1977) 1089–1091.

    PubMed  Google Scholar 

  44. Stephan, F., and Zucker, I., Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. natl Acad. Sci. USA69 (1972) 1583–1586.

    PubMed  Google Scholar 

  45. Stern, N., Beahm, E., Sowers, J., McGinty, D., Eggena, P., Littner, M., Nyby, M., and Catania, R., The effect of age on circadian rhythm of blood pressure, catecholamines, plasma renin activity, prolactin, and corticosteroids in essential hypertension, in: Ambulatory Blood Pressure Monitoring, pp. 157–162. Eds M. A. Weber and J. I. M. Drayer. Steinkopff, Darmstadt 1984.

    Google Scholar 

  46. Sweeney, B. M., Rhythmic Phenomena in Plants. Academic Press, New York 1969.

    Google Scholar 

  47. Takahashi, J., Neuro and endocrine regulation of avian circadian systems. Ph.D. Dissertation, University of Oregon, Eugene 1981.

    Google Scholar 

  48. Tilders, F. J. H., and Smelik, P. G., A diurnal rhythm in melanocyte-stimulating hormone content of the rat pituitary gland and its independence from the pineal gland. Neuroendocrinology17 (1975) 296–308.

    PubMed  Google Scholar 

  49. Underwood, H., and Groos, G., Vertebrate circadian rhythms: Retinal and extraretinal photoreception. Experientia38 (1982) 1013–1021.

    PubMed  Google Scholar 

  50. Vivien-Roels, B., Arendt, J., and Bradke, J., Circadian and circannual fluctuations of pineal indoleamines (serotonin and melatonin) inTestudo hermanni Gmelin (Reptilia, Chelonia). Gen. comp. Endocr.37 (1979) 197–210.

    PubMed  Google Scholar 

  51. Zimmerman, N., and Menaker, M., The pineal gland: A pacemaker within the circadian system of the house sparrow. Proc. natl Acad. Sci. USA76 (1979) 1167–1169.

    Google Scholar 

  52. Zrenner, C., Theories of pineal function from classical antiquity to 1900: A history, in: Pineal Research Reviews III. pp. 1–40. Ed. R. Reiter. Alan R. Liss, New York 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binkley, S. Structures and molecules involved in generation and regulation of biological rhythms in vertebrates and invertebrates. Experientia 49, 648–653 (1993). https://doi.org/10.1007/BF01923946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923946

Key words

Navigation