Skip to main content
Log in

Molecular recognition: Models for drug design

  • Multi-Author Review
  • Molecular Recognition
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The review takes examples, mostly from the recent literature, to illustrate how an understanding of physico-chemical properties and an appreciation of the molecular shape and electronic properties can lead to a better insight into molecular recognition processes. The techniques used to generate 3-dimensional structures of molecules and the influence this information has had on the drug design cycle, are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, M. W., Walsh, C. T., and Schreiber, S. L., Substrate specificity for the human rotamase FKBP: a view of FK506 and rapamysin as leucine-(twisted amide)-proline mimics. J. org. Chem.55 (1990) 4984–4986.

    Article  CAS  Google Scholar 

  2. Allen, F. N., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummellink, T., Hummellink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rogers, J. R., and Watson, D. G., The Cambridge crystallographic data centre: Computer-based search, retrieval analysis and display of information. Acta crystallogr.B35 (1979) 2331–2339.

    Article  Google Scholar 

  3. Allinger, N. L., Molecular mechanics. J. Am. chem. Soc.99 (1977) 8127–8134.

    Article  CAS  Google Scholar 

  4. Andrews, P. R., Craik, D. J., and Martin, J. L., Functional group contributions to drug-receptor interactions. J. med. Chem.27 (1984) 1648–1657.

    Article  CAS  PubMed  Google Scholar 

  5. Bash, P. A., Singh, U. C., Brown, F. K., Langridge, R., and Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science235 (1987) 574–576.

    Article  CAS  PubMed  Google Scholar 

  6. Bergin, R., and Carlstrom, D., The structure of catecholamines. II. The crystal structure of dopamine hydrochloride. Acta crystallogr.B24 (1968) 1506–1510.

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein, F. C., Koetzel, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rogers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M., The Protein Databank: A computer based archival file for macromolecular structures. J. molec. Biol.112 (1977) 535–542.

    Article  CAS  PubMed  Google Scholar 

  8. Blaney, F., Molecular modelling in the pharmaceutical industry. Chemistry Industry (1990) 791–794.

  9. Blaney, J. M., Weiner, P. K., Dearing, A., Kollman, P. A., Jorgensen, E. C., Oatley, S. J., Burridge, J. M., and Blake, C. C. F., Molecular mechanics simulation of protein-ligand interactions: Binding of thyroid hormone analogues to prealbumin. J. Am. chem. Soc.104 (1982) 6424–6434.

    Article  CAS  Google Scholar 

  10. Blundell, T., Sibanda, B. L., and Pearl, L., Three-dimensional structure, specificity and catalytic mechanism of renin. Nature304 (1983) 273–275.

    Article  CAS  PubMed  Google Scholar 

  11. Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S. R., and Hofsteege, J. The refined 1.9 Å crystal structure of human α-thrombin; interaction with D-Phe-Pro-Arg-chloromethylketone and significance of the Tyr-Pro-Pro insertion segment. EMBO J.8 (1989) 2467–2475.

    Article  Google Scholar 

  12. Bode, W., Meyer, E., and Powers, J. C., Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanisms, substrate specificity and mechanism-based inhibitors. Biochemistry28 (1989) 1951–1963.

    Article  CAS  PubMed  Google Scholar 

  13. Bode, W., Tyrk, D., and Stuerzebecher, J., Geometry of binding of the benzamidine- and arginine- based inhibitors N-α-(2-naphthylsulphonylglycyl)DL-p-aminophenylalanylpiperidine (NAPAP) and (2R,4R)-4-methyl-1-(N-α-(3-methyl-1,2,3,4-tetrahydro-8-quinilinesulphonyl)-L-arginyl)-2-piperidine carboxylic acid (MQPA) to human α-thrombin. X-ray crystallographic determination of the NAPAP-trypsin complex and modelling of NAPAP-thrombin and MQPA-thrombin. Eur. J. Biochem.193 (1990) 175–182.

    Article  CAS  PubMed  Google Scholar 

  14. Burt, S. K., and Greer, J., Search strategies for determining bioactive conformers of peptides and small molecules. A. Rep. med. Chem.23 (1988) 285–294.

    CAS  Google Scholar 

  15. Clore, M. G., and Gronenborn, A. M., Structures of large proteins in solution three- and four-dimensional heteronuclear NMR spectroscopy. Science252 (1991) 1390–1399.

    Article  CAS  PubMed  Google Scholar 

  16. Cohen, C. N., Blaney, J. M., Humblet, C., Grund, P., and Barry, D. C., Molecular modeling software and methods for medicinal chemistry. J. med. Chem.33 (1990) 883–894.

    Article  CAS  PubMed  Google Scholar 

  17. Cooper, J. B., Foundling, S. I., Blundell, T. L., Boger, J., Jupp, R. A., and Kay, K., X-ray studies of aspartic proteinase-statin inhibitor complexes. Biochemistry28 (1989) 8596–9479.

    Article  CAS  PubMed  Google Scholar 

  18. Cramer, R. D., Patterson, D. E., and Bunce, J. D., Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins. J. Am. chem. Soc.110 (1988) 5959–5967.

    Article  CAS  PubMed  Google Scholar 

  19. Davis, J. F., Delcamp, T. J., Prendergast, N. J., Ashford, V. A., Freisheim, J. J., and Kraut, J., Crystal structure of recombinant human dihydrofolate reductase complexed with folate and 5-deazafolate. Biochemistry29 (1990) 9467.

    Article  Google Scholar 

  20. Dean, P. M., Drug-receptor recognition: Electrostatic field lines at the receptor and dielectric effects. Br. J. Pharmac.74 (1981) 39–46.

    Article  CAS  Google Scholar 

  21. Derome, A. E., Modern NMR Techniques for Chemistry Research. Pergamon Press, Oxford 1987.

    Google Scholar 

  22. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P., AM1: A new general purpose quantum molecular model. J. Am. chem. Soc.107 (1985) 3902–3902.

    Article  CAS  Google Scholar 

  23. Dewar, M. J. S., and Thiel, W. J., Ground state of molecules. 38. The MNDO approximations and parameters. J. Am. chem. Soc.99 (1977) 4899–4907.

    Article  CAS  Google Scholar 

  24. van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L., and Clardy, J., Atomic structure of FKBP-FK506, an immunophilinimmunosuppressant complex. Science252 (1991) 839–842.

    Article  PubMed  Google Scholar 

  25. Ehrlich, P., On immunity with special reference to cell life. Croonian Lecture. Proc. Roy. Soc. London66 (1900) 424–428.

    Article  CAS  Google Scholar 

  26. Erickson, J., Neidhardt, D. J., Van Drie, J., Krempf, D. J., Wang, X. C., Norbeck, D. W., Plattner, J. J., Rittenhouse, J. W., Turon, M., Wideburg, N., Kohlbrenner, W. E., Simmer, R., Helfrich, R., Paul, D. A., and Knigge, M., Design, activity, and 2.8 Å crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science249 (1990) 527–529.

    Article  CAS  PubMed  Google Scholar 

  27. Finkelstein, A. V., and Janin, J., The price of lost freedom: entropy of bimolecular complex formation. Protein Engng3 (1989) 1–3.

    Article  CAS  Google Scholar 

  28. Fleischman, S. H., and Brooks, C. L., Protein drug interactions: Characterisation of inhibitor binding in complexes of DHFR with trimethoprim and related derivatives. Proteins7 (1990) 52–61.

    Article  CAS  PubMed  Google Scholar 

  29. Frisch, M. J., Head-Gordon, M., Trucks G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M. A., Binkley, J. S., Gonzlas, C., Defress, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S., and Pople, J. A., Gaussian 90. Gaussian Inc, Pittsburg PA 1990.

    Google Scholar 

  30. Geller, M., Swanson, S. M., and Meyer, E. F. Jr, Dynamic properties of the first steps of enzymatic reaction steps of porcine pancreatic elastase (PPE). Molecular dynamics simulation of a Michaelis complex: PPE and hexapeptide Thr-Pro-n-Val-Leu-Tyr-Thr. J. Am. chem. Soc.112 (1990) 8925–8931.

    Article  CAS  Google Scholar 

  31. Getzoff, E. D., Tainer, J. A., Weiner, P. K., Kollman, P. A., Richardson, J. S., and Richardson, D. C., Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature306 (1983) 287–290.

    Article  CAS  PubMed  Google Scholar 

  32. Grutter, M. G., Priestle, J. P., Rahuel, J., Grossenbacher, H., Bode, W., Hofsteege, J., and Stone, S. R., Crystal structure of the thrombinhirudin complex: a novel mode of serine protease inhibition. EMBO J.9 (1990) 2361–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gund, P., Halgren, T. A., and Smith, G. M., Molecular modeling as an aid to drug design and discovery. A. Rep.med. Chem.22 (1987) 269–279.

    CAS  Google Scholar 

  34. van Gunsteren, W. F., Methods for calculation of free energies and binding constants: Sucess and problems, in: Computer Simulations of Bimolecular Systems and Experimental Applications, pp. 27–59. Eds W. F. van Gunsteren and P. K. Weiner. ESCOM, 1989.

  35. van Gunsteren, W. F., and Berendsen, H. J. C., Molecular Dynamics simulations: Techniques and applications to proteins, in: Molecular Mechanics and Protein Structure, pp. 5–14. Ed. J. Hermans. Polycrystal Books Service, Western Springs, Illinois, 1985.

    Google Scholar 

  36. van Gunsteren, W. F., and Berendsen, H. J. C., Thermodynamic cycle integration by computer simulation as a tool for obtaining free energy difference in molecular chemistry. J. comp.-aided molec. Design1 (1987) 171–179.

    Article  Google Scholar 

  37. Hassall, C. H., Computer graphics as an aid to drug design. Chem. Britain.1 (1985) 39–46.

    Google Scholar 

  38. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H., Model for the structure of bacteriorhodopsin based on high-resolution electron-cryomicroscopy. J. molec. Biol.213 (1990) 899–929.

    Article  CAS  PubMed  Google Scholar 

  39. Hitchings, G., Selective inhibitors of dihydrofolate reductase. In vitro Cell Dev. Biol.25 (1989) 303–310.

    Article  CAS  PubMed  Google Scholar 

  40. James, M. N. G., Sielecki, A., Salituro, F., Rich, D. H., and Hofmann, T., Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillipepsin. Proc. natl Acad. Sci. USA79 (1982) 6137–6141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Janin, J., and Chothia, C., The structure of protein-protein recognition sites. J. biol. Chem.25 (1990) 16027–16030.

    Article  Google Scholar 

  42. Karuso, P., Kessler, H., and Mierke, D. F., Solution structure of FK506 from nuclear magnetic resonance and molecular dynamics. J. Am. chem. Soc.112 (1990) 9434–9436.

    Article  CAS  Google Scholar 

  43. Kilne, A. D., Braun, W., and Wüthrich, K., Studies by1H Nuclear magnetic resonance and distance geometry of the solution conformation of the α-amylase inhibitor tendamistat. J. molec. Biol.189 (1986) 377–382.

    Article  Google Scholar 

  44. Kline, A. D., Braun, W., and Wüthrich, K., Determination of the complete three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry. J. molec. Biol.204 (1988) 675–724.

    Article  CAS  PubMed  Google Scholar 

  45. Kollman, P. A., X-Ray Crystallography and Drug Action, chapt. 4, pp. 63–82. Eds A. S. Horn and C. J. D. Ranter. Oxford Univ. Press, 1984.

  46. Kuyper, L. F., The potential role of solvation in the dihydrofolate reductase species selectivity of trimethoprim, in: Crystallographic and Modelling Methods in Molecular Design, pp. 56–79. Eds C. E. Bugg and S. E. Ealick. Springer-Verlag, Heidelberg 1989.

    Google Scholar 

  47. Lim, L. W., Stegemen, R. A., Leimgruber, N. K., Gierse, J. K., and Abdel-Meguid, S. S., Preliminary crystallographic study of glycolated recombinant human renin. J. molec. Biol.210 (1989) 239–240.

    Article  CAS  PubMed  Google Scholar 

  48. Loosli, H.-R., Kessler, H., Oschkinaf, H., Weber, H.-P., Petcher, J., and Widmer, A., The conformation of cyclosporin in the crystal and in solution. Helv. chim. Acta68 (1985) 682–704.

    Article  CAS  Google Scholar 

  49. McCammon, J. A., Computer aided molecular design. Science238 (1987) 486–491.

    Article  CAS  PubMed  Google Scholar 

  50. Matthews, S. A., Bolin, J. T., Burridge, J. M., Filman, D. J., Volz, K. W., Kaufman, B. T., Beddell, C. R., Chapness, J. N., Stammers, D. K., & Kraut, J., Refined crystal structure of E. coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J. biol. Chem.260 (1985) 381–391.

    Article  CAS  PubMed  Google Scholar 

  51. Miller, S., The structure of interfaces between subunits of dimetric and tetrameric proteins. Protein Engng3 (1989) 77–83.

    Article  CAS  Google Scholar 

  52. Miller, S., Jaskolski, M., Rao, J. K. M., Leis, J., and Wlodowar, A., Crystal structure of retroviral protease proves relationship to aspartic protease family. Nature337 (1989) 576–579.

    Article  CAS  PubMed  Google Scholar 

  53. Miller, M., Schneider, J., Sathyanarayana, B. K., Toth, M. V., Marshall, G. R., Clawson, L., Selk, L., Kent, S. B. H., and Wlodowar, A., Struture of a complex of synthetic HIV-1 protease with a substrate based inhibitor at 2.3 Å resolution. Science246 (1989) 1149–1152.

    Article  CAS  PubMed  Google Scholar 

  54. Navia, M. A., McKeever, B. B., Springer, J. P., Lin, T-S., Williams, H. R., Firestone, R. A., Pisano, J. M., Docherty, J. B., Finke, P. E., and Hoogsteen, K., Crystallographic study of a beta lactam inhibitor complex with elastase at 1.84 Å. Nature327 (1987) 79–82.

    Article  CAS  PubMed  Google Scholar 

  55. Navia, M. A., McKeever, B. B., Springer, J. P., Lin, T.-S., Williams, H. R., Fluder, E. M., Dorn, C. P., and Hoogsteen, K., Structure of a human neutrophil elastase with a peptide chloromethyl ketone inhibitor at 1.84 Å. Proc. natl Acad. Sci. USA86 (1989) 7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oefner, C., D'Arcy, A., and Winkler, F. K., Crystal structure of human dihydrofolate reductase complexed with folate. Eur. J. Biochem.174 (1988) 377–385.

    Article  CAS  PubMed  Google Scholar 

  57. Osguthorpe, P. D., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., and Hagler, A. T., Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug receptor system. Proteins4 (1988) 31–47.

    Article  PubMed  Google Scholar 

  58. Pearlman, D. A., and Kollman, P. A., Free energy perturbation calculations: Problems and pitfalls along the gilded road, in: Computer Simulations of Bimolecular Systems and Experimental Applications, pp. 101–119. Eds. W. F. van Gunsteren and P. K. Weiner. ESCOM, 1989.

  59. Pearl, Lh., and Taylor, W. R., A structural model for the retroviral protease. Nature329 (1987) 351–354.

    Article  CAS  PubMed  Google Scholar 

  60. Perutz, M. F., Electrostatic effects in proteins. Science201 (1978) 1187–1191.

    Article  CAS  PubMed  Google Scholar 

  61. Perutz, M. F., Fermi, G., Abraham, D. J., Poyart, C., and Bursaux, E., Hemoglobin as a receptor of drugs and peptides: X-ray studies of the stereochemistry of binding. J. Am. chem. Soc.108 (1986) 1064–1078.

    Article  CAS  Google Scholar 

  62. Perutz, M. F., Kendrew, J. C., and Watson, H. C., Structure and function of hemoglobin. J. molec. Biol.13 (1965) 669–678.

    Article  CAS  Google Scholar 

  63. Popular programs distributed by QCPE, include AMPAC (506) and MOPAC (455), Quantum Chemistry Program Exchange (QCPE), Indiana University Chemistry Department.

  64. Powers, J. C., Oleksyszyn, J., Narasimhan, S. L., Kam, C. M., Radhakrishnan, R., and Meyer, F. J., Reaction of porcine pancreatic elastase with 7-substituted 3-alkoxy-4-chloroisocoumarins: design of potent inhibitors using the crystal structure of the complex formed with 4-chloro-3-ethoxy-7-guanidoisocoumarin. Biochemistry29 (1990) 3108–3118.

    Article  CAS  PubMed  Google Scholar 

  65. Pullman, B., Lavery, R., and Pullman, A., Two aspects of DNA polymorphism and microheterogenecity: Molecular electrostatic popolymorphism and steric accessibility. Eur. J. Biochem.124 (1982) 229–238.

    Article  CAS  PubMed  Google Scholar 

  66. Richards, G., Quantum mechanics in molecular design, in: Computer-Aided Molecular Design, chapt. 3, pp. 43–50, IBC. 1989.

  67. Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H.-J., Johnson, J. E., Kramer, G., Luo, M., Moser, A. G., Ruecker, R. R., Sherry, B., and Vriend, G., Structure of human common cold virus and functional relationship to other piconaviruses. Nature317 (1985) 145–153.

    Article  CAS  PubMed  Google Scholar 

  68. Rydel, T. J., Ravichandran, K. G., Tulinsky, A., Bode, W., Huber, R., Roitsch, C., and Fenton, J. I. I., The structure of a complex of recombinant hirudin and human α-thrombin. Science249 (1990) 277–280.

    Article  CAS  PubMed  Google Scholar 

  69. Schechter, I., and Berger, A., On the size of the active site in proteins. 1. Papain. Biochem. biophys. Res. Commun.27 (1967) 157–162.

    Article  CAS  PubMed  Google Scholar 

  70. Sheridan, R. P., and Allen, L. C., The active site electrostatic potential of human carbonic anhydrase. J. Am. chem. soc.103 (1981) 1544–1550.

    Article  CAS  Google Scholar 

  71. Sielecki, A. R., Hayakawa, K., Fujinaga, M., Murphy, M. E. P., Fraser, M., Muir, A. K., Carilli, C. T., Lewicki, J. A., Baxter, J. D., and James, M. N. G., Structure of recombinant human renin, a target for cardiovascular-active drugs at 2.5 Å resolution. Science243 (1989) 1346–1351.

    Article  CAS  PubMed  Google Scholar 

  72. Stammers, D. K., Chapness, J. N., Beddell, C. R., Dann, J. G., Elipouslos, E., Geddes, A. J., Ogg, D., and North, A. C. T., The structure of mouse L1210 dihydrofolate reductase-drug complexes and the construction of a model of the human enzyme. FEBS218 (1987) 178–184.

    Article  CAS  Google Scholar 

  73. Stout, G. H., and Jensen, L. H., X-Ray Structure Determination. A Practical Guide. John Wiley & Sons, New York 1989.

    Google Scholar 

  74. Takahashi, L. H., Radhakrishnan, R., Rosenfeld, R. E., Meyer, E. F., and Trainor, D. A. Crystal structure of the covalent complex formed by a peptidyl alpha-alpha-difluoro-ketone amide with porcine pancreatic elastase at 1.78 Å. J. Am. chem. Soc.111 (1989) 3368–3374.

    Article  CAS  Google Scholar 

  75. Vedani, A., and Huhta, D. W., A new force field for modeling metalloproteins. J. Am. chem. Soc.112 (1990) 4759–4767.

    Article  CAS  Google Scholar 

  76. Walkinshaw, M. D., Protein targets for structure based drug design. Med. Res. Rev. (1991) in press.

  77. Warshel, A., and Levitt, M., Theoretical study of lysozyme catalysis. J. molec. Biol.103 (1976) 227–249.

    Article  CAS  PubMed  Google Scholar 

  78. Weber, Ch., Widmer, G., von Freyberg, B., Traber, R., Braun, W., Widmer, H., and Würthrich, K., The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution. Biochemistry30 (1991) 6563–6574.

    Article  CAS  PubMed  Google Scholar 

  79. Weber, P. C., Ohlendorf, Wendoloski, J. J., and Salemme, F. R., Structural origins of high-affinity binding to streptavidin. Science243 (1989) 85–88.

    Article  CAS  PubMed  Google Scholar 

  80. Widmer, H., and Breckenridge, R., Conformation and mobility of calcitonin studies by NMR and restrained molecular dynamics calculations. Proc. XIV Int. Conference NMR, p. 8. ICMRBS, Warwick, 1990.

    Google Scholar 

  81. Weiner, P. K., and Kollman, P. A., AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions. J. Comp. Chem.2 (1981) 287–303.

    Article  CAS  Google Scholar 

  82. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., and Weiner, P. J., A new force field for molecular mechanics simulation of nucleic acids and proteins. J. Am. chem. Soc.106 (1984) 765–784.

    Article  CAS  Google Scholar 

  83. Weiner, P. K., Langridge, R., Blaney, J. M., Shaefer, R., and Kollman, P. A., Electrostatic potential surfaces. Proc. natl Acad. Sci. USA79 (1982) 3754–3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. White, D. N., Ruddock, J. N., and Edington, P. R., Molecular mechanics, in: Computer-Aided Molecular Design, chapt. 2, pp. 23–41. IBC, 1989.

  85. Wlodowar, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. T., Selk, L. M., Clawson, L., Schneider, J., and Keny, S. B. H., Conserved folding in retroviral proteases: Crystal structure of synthetic HIV-1 protease. Science245 (1989) 616–621.

    Article  Google Scholar 

  86. Wong, C. F., and McCammon, J. A., Dynamics and design of enzymes and inhibitors. J. Am. chem. Soc.108 (1986) 3830–3832.

    Article  CAS  Google Scholar 

  87. Wright, P. E., What can two-dimensional NMR tell us about proteins? Trends biochem. Sci.14 (1989) 255–260.

    Article  CAS  PubMed  Google Scholar 

  88. Wüthrich, K., NMR of Proteins and Nucleic Acids. John Wiley & Sons, New York 1986.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breckenridge, R.J. Molecular recognition: Models for drug design. Experientia 47, 1148–1161 (1991). https://doi.org/10.1007/BF01918379

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01918379

Key words

Navigation