Skip to main content
Log in

Microscopic calculation of the collective motion in76Kr

  • Published:
Zeitschrift für Physik A Atoms and Nuclei

Abstract

A microscopic calculation of Bohr's collective Hamiltonian is used to describe the collective motion in the76Kr isotope. A single-particle basis calculated in a deformed Woods-Saxon potential leads to the potential energy surface obtained by the Strutinsky renormalization procedure, and to the inertial functions determined in the cranking model approximation.

The collective Schrödinger equation is solved numerically. The low-energy, even parity states in76Kr are analyzed in the frame of this model. The theoretical results involve the potential energy and the inertial parameters as functions of intrinsic quadrupole deformations, the collective levels and wave functions including their transitions and electromagnetic moments.

A good agreement between experiment and theory is obtained without adjusting specifically for this nucleus any parameter in the model. Some results regarding statical and dynamical characteristics of even-even74, 78, 80Kr isotopes are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piercey, R.B., Ramayya, A.V., Hamilton, J.H., Maguire, C.F., Robinson, R.L., Kim, H.J., Wells, J.C.: Proc. Int. Conf. on Nuclear Interactions, Canberra, Australia (1978)

  2. Hamilton, J.H., Robinson, R.L., Ramayya, A.V.: Nuclear interactions. Robson, B.A. (ed.), p. 253. Berlin, New York, Heidelberg: Springer 1979

    Google Scholar 

  3. Piercey, R.B., Hamilton, J.H., Soundranayagam, R., Ramayya, A.V., Maguire, C.F., Sun, X.-J., Zhao, Z.Z., Robinson, R.L., Kim, H.J., Frauendorf, S., Döring, J., Funke, L., Winter, G., Roth, J., Cleeman, L., Eberth, J., Neumann, W., Wells, J.C., Lin, J., Rester, A.C., Carter, H.K.: Phys. Rev. Lett.47, No. 21, 1514 (1981)

    Google Scholar 

  4. Matsuki, S., Sakamoto, N., Ogino, K., Kadota, Y., Tanabe, T., Okuma, Y.: Nucl. Phys. A370, 1 (1981)

    Google Scholar 

  5. Keinonen, J., Lieb, K.P., Hellmeister, H.P., Bockisch, A., Emling, H.: Nucl. Phys. A376, 246 (1982)

    Google Scholar 

  6. Piercey, R.B., Ramayya, A.V., Hamilton, J.H., Sun, X.-J., Zhao, Z.Z., Tobinson, R.L., Kim, H.J., Wells, John, C.: Phys. Rev. C25, No. 4, 1941 (1982)

    Google Scholar 

  7. Larsson, S.E., Leander, G., Ragnarsson, I., Alenius, N.G.: Nucl. Phys. A261, 77 (1976)

    Google Scholar 

  8. Kaup, U., Gelberg, A.: Z. Phys. A — Atoms and Nuclei293, 311 (1979)

    Google Scholar 

  9. Ahalpara, D.P., Bhatt, K.H.: Phys. Rev. C25, No. 4, 2072 (1982)

    Google Scholar 

  10. Soundranayagam, R., Ramacataram, S., Ramayya, A.V., Hamilton, J.H., Robinson, R.L.: Phys. Rev. C25, No. 6, 2983 (1982)

    Google Scholar 

  11. Köppel, Th.J.: Ph.D. thesis, University of Basel, Switzerland 1980

    Google Scholar 

  12. Köppel, Th.J., Faessler, A., Götz, U.: Nucl. Phys. A403, 263 (1983)

    Google Scholar 

  13. Ansari, A., Civitarese, O., Faessler, A.: Nucl. Phys. A334, 93

  14. Myers, W.D.: Nucl. Phys. A145, 387 (1980)

    Google Scholar 

  15. Götz, U., Pauli, H.C., Alder, K.: Nucl. Phys. A175, 481 (1971)

    Google Scholar 

  16. Pauli, H.C.: Phys. Rep. 7 C, No. 2, 35 (1973)

    Google Scholar 

  17. Brack, M., Damgaard, J., Jensen, A.S., Pauli, H.C., Strutinsky, V.M., Wong, C.A.: Rev. Mod. Phys.44, No. 2, 320 (1972)

    Google Scholar 

  18. Bès, D.R.: Dan. Vidensk. Selsk. Mat. Fys. Medd.33, No. 2 (1961)

  19. Kumar, K., Baranger, M.: Nucl. Phys. A92, 608 (1967)

    Google Scholar 

  20. Hestens, M.: Optimization Theory 1975

  21. Tazaki, S., Takada, K., Kaneko, K., Sakata, F.: Prog. Theor. Phys. Suppl.71, 123 (1981)

    Google Scholar 

  22. Broglia, R.A., Maglione, E., Sofia, H.M., Vitturi, A.: Nucl. Phys. A375, 217 (1982)

    Google Scholar 

  23. Nolte, E., Shida, Y., Kutscher, W., Prestele, R., Morinaga, H.: Z. Phys.268, 267 (1974)

    Google Scholar 

  24. Ledergerber, T., Pauli, H.C.: Nucl. Phys. A207, 1 (1973)

    Google Scholar 

  25. Gyurkovich, A., Sobiezewski, A., Rohozinski, S.G.: Nucl. Phys. A383, 77 (1982)

    Google Scholar 

  26. Kumar, K., Remaud, B., Aguer, P., Vaagen, J.S., Rester, A.C., Foucher, R., Hamilton, J.H.: Phys. Rev. C16, 1235 (1977)

    Google Scholar 

  27. Dudek, J., Dudek, W., Ruchowska, E., Skalski, J.: Z. Phys. A — Atoms and Nuclei294, 341 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the BMFT and the International Bureau of the Kernforschungszentrum Karlsruhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovici, A., Faessler, A. & Köppel, T. Microscopic calculation of the collective motion in76Kr. Z Physik A 314, 227–237 (1983). https://doi.org/10.1007/BF01879882

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01879882

Keywords

Navigation