Skip to main content
Log in

The best of times, the worst of times

The global challenge of antimicrobial resistance

  • Reviews
  • Published:
Pharmacy World and Science Aims and scope Submit manuscript

Abstract

The development of resistance to antimicrobial agents by many bacterial pathogens has compromised traditional therapeutic regimens, making treatment of infections more difficult and frequently more expensive. Three factors have contributed to the development and spread of resistance: mutations in common genes that extend their spectrum of resistance, transfer of resistance genes among diverse microorganisms and increases in selective pressures in and outside of the hospital environment that enhance the development of resistant organisms. Some new resistance mechanisms are difficult to detect in the laboratory. Thus, resistant microorganisms may go unnoticed until they are widely disseminated in a hospital. The challenge for pharmacists, microbiologists and physicians is not only to contain the spread of existing resistant organisms, but also to prevent the emergence of new resistant pathogens by encouraging the rational and prudent use of antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940;146:837–9.

    Google Scholar 

  2. Kirby WMM. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 1944;99:452–5.

    Google Scholar 

  3. Tenover FC. Novel and emerging mechanisms of antimicrobial resistance in nosocomial pathogens. Am J Med 1991;91 (suppl B):76S-81S.

    Google Scholar 

  4. Neu HC. The crisis in antibiotic resistance. Science 1992;257:1064–73.

    PubMed  Google Scholar 

  5. Murray BM. New aspects of antimicrobial resistance and the resulting therapeutic dilemmas. J Infect Dis 1991;163:1185–94.

    Google Scholar 

  6. Roy C, Segura C, Tirado M, Reig R, Hermida M, Teruel D, et al. Frequency of plasmid-determined beta-lactamases in 680 consecutively isolated strains of Enterobacteriaceae. Eur J Clin Microbiol 1985;4:146–7.

    PubMed  Google Scholar 

  7. Phillipon A, Labia R, Jacoby C. Extended-spectrum Β-lactamases. Antimicrob Agents Chemother 1989;33:1131–6.

    PubMed  Google Scholar 

  8. Jacoby GA, Medeiros AA. More extended spectrum betalactamases. Antimicrob Agents Chemother 1991;35:1697–1704.

    PubMed  Google Scholar 

  9. Sougakoff W, Goussard S, Gerbaud G, Courvalin P. Plasmidmediated resistance to third generation cephalosporins caused by point mutations in TEM-type penicillinase genes. Rev Infect Dis 1988;10:879–84.

    PubMed  Google Scholar 

  10. Meyer KS, Urban C, Eagan JA, Berger BJ, Rahal JJ. Nosocomial outbreak ofKlebsiella infection resistant to late-generation cephalosporins. Ann Intern Med 1993;119:353–8.

    PubMed  Google Scholar 

  11. Smith CE, Tilman S, Howell AW, Longfield RN, Jorgensen JH. Failure of ceftazidime-amikacin therapy for bacteremia and meningitis due toKlebsiella pneumoniae producing an extended spectrum Β-lactamase. Antimicrob Agents Chemother 1990;34:1290–3.

    PubMed  Google Scholar 

  12. DeFlaun MF, Levy SB. Genes and their varied hosts. In: Levy SB, Miller RV, editors. Gene transfer in the environment. New York: McGraw Hill Publishing, 1991:1–32.

    Google Scholar 

  13. Arthur M, Andremont A, Courvalin P. Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother 1987;31:404–9.

    PubMed  Google Scholar 

  14. Trieu-Cuot P, Gerbaud G, Lambert T, Courvalin P.In vivo transfer of genetic information between Gram-negative and Gram-positive bacteria. EMBO J 1985;4:3583–7.

    PubMed  Google Scholar 

  15. Murray BE, Mederski-Samoraj B, Foster SK, Brunton JL, Harford P.In vitro studies of plasmid-mediated penicillinase fromStreptococcus faecalis suggest a staphylococcal origin. J Clin Invest 1986;77:289–93.

    PubMed  Google Scholar 

  16. Collatz E, Carlier C, Courvalin P. The chromosomal 3′5″-aminoglycoside phosphotransferase inStreptococcus pneumoniae is closely related to its plasmid-coded homologs inStreptococcus faecalis andStaphylococcus aureus. J Bacteriol 1983;156:1373–7.

    PubMed  Google Scholar 

  17. Noble WC, Virani Z, Cree RGA. Co-transfer of vancomycin and other resistance genes fromEnterococcus faecalis NCTC 12201 toStaphylococcus aureus. FEMS Microbiol Lett 1992; 93:195–8.

    Google Scholar 

  18. Ries AA, Wells JG, Olivola D, Ntakibirora M, Nyandwi S, Ntibakivayo M, et al. EpidemicShigella dysenteriae type I in Burundi: pan-resistance and implications for prevention. J Infect Dis. In press.

  19. Weber JT, Mintz ED, Canizares R, Semiglia A, Gomez I, Sempertegui R, et al. Epidemic cholera in Ecuador: multidrug-resistance and transmission by water and seafood. Epidemiol Infect 1994;112:1–11.

    PubMed  Google Scholar 

  20. Edlin BR, Tokars JI, Grieco MH, Crawford JT, Williams J, Sordillo EM, et al. An outbreak of multidrug resistant tuberculosis among hospitalized patients with acquired immuno-deficiency syndrome. N Engl J Med 1992;326:1514–21.

    PubMed  Google Scholar 

  21. McGowan JE Jr, Hall EC, Parrott PL. Antimicrobial susceptibility in Gram-negative bacteremia: are nosocomial isolates really more resistant? Antimicrob Agents Chemother 1989;33:1855–9.

    PubMed  Google Scholar 

  22. Cohen ML, Tauxe RV. Drug-resistantSalmonella in the United States: an epidemiologic perspective. Science 1986; 234:964–9.

    PubMed  Google Scholar 

  23. Reichler MR, Allphin AA, Breiman RF, Schreiber JR, Arnold JE, McDougal LK, et al. The spread of multiply resistantStreptococcus pneumoniae at a day care center in Ohio. J Infect Dis 1992;166:1346–53.

    PubMed  Google Scholar 

  24. Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T, Mouton RP. Quinolone resistance in campylobacters isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Anti-microb Chemother 1991;27:199–208.

    Google Scholar 

  25. Mirelis B, Miro E, Navarro F, Ogalla CA, Bonal J, Prats G. Increased resistance to quinolone in Catalonia, Spain. Diagn Microbiol Infect Dis 1993;16:137–9.

    PubMed  Google Scholar 

  26. Rautelin H, Renkonen O-V, Kosunen TU. Emergence of fluoroquinolone resistance inCampylobacter jejuni andCampylobacter coli in subjects from Finland. Antimicrob Agents Chemother 1991;35:2065–9.

    PubMed  Google Scholar 

  27. Klugman K. Pneumococcal resistance to antibiotics. Clin Microbiol Rev 1990;3:171–6.

    PubMed  Google Scholar 

  28. Centers for Disease Control and Prevention. Drug-resistantStreptococcus pneumoniae — Kentucky and Tennessee, 1993. Morbid Mortal Weekly Rep 1994;43:23–5.

    Google Scholar 

  29. Munoz R, Coffey TJ, Daniels M, Dowson CG, Laible G, Casal J, et al. Intercontinental spread of a multiresistant clone of serotype 23FStreptococcus pneumoniae. J Infect Dis 1991;164:302–6.

    PubMed  Google Scholar 

  30. McDougal LK, Facklam R, Reeves M, Hunter S, Swenson JM, Hill B, et al. Analysis of multiply antimicrobial-resistant isolates ofStreptococcus pneumoniae from the United States. Antimicrob Agents Chemother 1992;36:2177–84.

    Google Scholar 

  31. Klugman KP, Coffey TJ, Smith A, Wasas A, Meyers M, Spratt BG. Cluster of an erythromycin-resistant variant of Spanish multiply resistant 23F clone ofStreptococcus pneumoniae in South Africa. Eur J Clin Microbiol Infect Dis 1994;13:171–4.

    PubMed  Google Scholar 

  32. McDougal LK, Tenover FC. Analysis of penicillin and cephalosporin-resistantStreptococcus pneumoniae isolates: relatedness of U.S. isolates and comparison of penicillin binding protein (PBP) affinities [Abstract]. In: Program and Abstracts of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy; 1993 Oct 17–20; New Orleans. Washington DC: American Society for Microbiology, 1993, Abstract 204:138.

    Google Scholar 

  33. Sloas MM, Barrett FF, Chesney PJ, English BK, Hill BC, Tenover FC, et al. Cephalosporin treatment failure in penicillin- and cephalosporin-resistantStreptococcus pneumoniae meningitis. Pediatr Infect Dis J 1992;11:662–6.

    PubMed  Google Scholar 

  34. Tenover FC, Tokars J, Swenson J, Paul S, Spitalny K, Jarvis W. Ability of clinical laboratories to detect antimicrobial agent-resistant enterococci. J Clin Microbiol 1993;31:1695–9.

    PubMed  Google Scholar 

  35. Katsanis GP, Spargo J, Ferraro MJ, Sutton L, Jacoby GA. Detection ofKlebsiella pneumoniae andEscherichia coli strains producing extended-spectrum Β-lactamases. J Clin Microbiol 1994;32:691–6.

    PubMed  Google Scholar 

  36. Travis J. Reviving the antibiotic miracle? Science 1994;264:360–2.

    Google Scholar 

  37. Neu HC. Quinolones: an overview. Diagn Microbiol Infect Dis 1990;13:195–6.

    PubMed  Google Scholar 

  38. Blumberg HM, Rimland D, Carroll DJ, Terry P, Wachsmuth IK. Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistantStaphylococcus aureus. J Infect Dis 1991;163:1279–85.

    PubMed  Google Scholar 

  39. Freiden TR, Mangi RJ. Inappropriate use of oral ciprofloxacin. JAMA 1990;264:1438–40.

    PubMed  Google Scholar 

  40. Threlfall EJ, Ward LR, Rowe B, Raghupathi S, Chandrasekaran V, Vandepitte J, et al. Widespread occurrence of multiple drug-resistantSalmonella typhi in India. Eur J Clin Microbiol Infect Dis 1992;11:990–3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenover, F.C. The best of times, the worst of times. Pharm World Sci 17, 149–151 (1995). https://doi.org/10.1007/BF01879708

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01879708

Keywords

Navigation