Skip to main content
Log in

Electric field-induced breakdown of lipid bilayers and cell membranes: A thin viscoelastic film model

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A simple viscoelastic film model is presented, which predicts a breakdown electric potential having a dependence on the electric pulse length which approximates the available experimental data for the electric breakdown of lipid bilayers and cell membranes (summarized in the reviews of U. Zimmermann and J. Vienken, 1982,J. Membrane Biol. 67:165 and U. Zimmermann, 1982,Biochim. Biophys. Acta 694:227). The basic result is a formula for the time τ of membrane breakdown (up to the formation of pores): τ=α(μ/C)/(ε 2m ε 20 U 4/24σGh 3+T 2Gh−1), where α is a proportionality coefficient approximately equal to ln(h/2ζ0),h being the membrane thickness and ζ0 the amplitude of the initial membrane surface shape fluctuation (α is usually of the order of unity), μ represents the membrane shear viscosity,G the membranes shear elasticity modules, ε m the membrane relative permittivity, ε0=8.85×10−12 Fm,U the electric potential across the membrane, σ the membrane surface tension andT the membrane tension. This formula predicts a critical potentialU c ;U c =(24σGh 3 2 m ε 2 0 )1/4 (for τ=∞ andT=0). It is proposed that the time course of the electric field-induced membrane breakdown can be divided into three stages: (i) growth of the membrane surface fluctuations, (ii) molecular rearrangements leading to membrane discontinuities, and (iii) expansion of the pores, resulting in the mechanical breakdown of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abidor, I.G., Arakelyan, V.B., Chernomordik, L.V., Chizmadzhev, Yu.A., Pastushenko, V.F., Tarnsevich, M.R. 1979. Electrical breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion.Bioelectrochem. Bioenerg. 6:37–52

    Google Scholar 

  • Alvarez, O., Latorre, R. 1978. Voltage-dependent capacitance in lipid bilayers made from monolayers.Biophys. J. 21:1–17

    PubMed  Google Scholar 

  • Benz, R., Zimmermann, U. 1980. Relaxation studies on cell membranes and lipid bilayers in the high electric field range.Bioelectrochem. Bioenerg. 7:723–739

    Google Scholar 

  • Chizmadzhev, Yu.A., Arakelyan, V.B., Pastushenko, V.F. 1979. Electric breakdown of bilayer lipid membranes: III. Analysis of possible mechanisms of defect origination.Bioelectrochem. Bioenerg. 6:63–70

    Google Scholar 

  • Crowley, J.M. 1973. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability.Biophys. J. 13:711–724

    PubMed  Google Scholar 

  • Dimitrov, D.S. 1982. Instability of thin liquid films between membranes.Colloid Polymer Sci. 260:1137–1144

    Google Scholar 

  • Dimitrov, D.S. 1983. Dynamic interactions between approaching surfaces of biological interest.In: Progress in Surface Science. S.G. Davison, editor. Pergamon, Oxford (in press)

    Google Scholar 

  • Evans, E., Skalak, R. 1980. Mechanics and Thermodynamics of Biomembranes. Clarendon, New York

    Google Scholar 

  • Houshay, M.D., Stanley, K.K. 1982. Dynamics of Biological Membranes. John Wiley, New York

    Google Scholar 

  • Jain, R.K., Maldarelli, C., Ruckenstein, E. 1978. Onset of microvilli in normal and neoplastic cells.A.I.Ch.E. Symp. Ser. Biorheology 74:120–124

    Google Scholar 

  • Maldarelli, C., Jain, R.K. 1982. The linear, hydrodynamic stability of an interfacially perturbed, transversely isotropic, thin, planar viscoelastic film: I. General formulation and a derivation of the dispersion equation; II. Extension of the theory to the study of the onset of small-scale cell membrane motions.J. Colloid Interface Sci. 90:233–262; 263–276

    Google Scholar 

  • Pastushenko, V.F., Chizmadzhev, Yu.A., Arakelyan, V.B. 1979. Electric breakdown of bilayer lipid membranes: II. Calculation of the membrane lifetime in the steady-state diffusion approximation.Bioelectrochem. Bioenerg. 6:53–62

    Google Scholar 

  • Skalak, R., Schmid-Schonbein, G.W., Chien, S. 1982. Analysis of white blood cell deformation.In: White Blood Cells. U. Bagge, C.V.R. Born, P. Gaehtgens, editors. pp. 1–10. Martinus Nijhoff, The Hague

    Google Scholar 

  • Steinchen, A., Gallez, D., Sanfeld, A. 1982. A viscoelastic approach to the hydrodynamic stability of membranes.J. Colloid Interface Sci. 85:5–15

    Google Scholar 

  • White, S.H. 1974. Comments on “Electrical breakdown of bimolecular lipid membranes as an electromechanical instability”.Biophys. J. 14:155–158

    PubMed  Google Scholar 

  • Zimmermann, U. 1982. Electric field-mediated fusion and related electrical phenomena.Biochim. Biophys. Acta 694:227–287

    PubMed  Google Scholar 

  • Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown of cell membranes.Biophys. J. 14:881–889

    Google Scholar 

  • Zimmermann, U., Scheurich, P., Pilwat, G., Benz, R. 1981. Cells with manipulated functions: New perspectives for cell biology, medicine, and technology.Angew. Chem. 93:332–351;Angew. Chem. Int. Ed. Eng. 20:325–344

    Google Scholar 

  • Zimmermann, U., Vienken, J. 1982. Dielectric field-induced cell-to-cell fusion.J. Membrane Biol. 67:165–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrov, D.S. Electric field-induced breakdown of lipid bilayers and cell membranes: A thin viscoelastic film model. J. Membrain Biol. 78, 53–60 (1984). https://doi.org/10.1007/BF01872532

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872532

Key Words

Navigation