Skip to main content
Log in

Effects of cations on ouabain binding by intact human erythrocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The present studies demonstrate that extracellular cations alter ouabain binding by intact human erythrocytes and that this alteration reflects a change in the apparent affinity but not the capacity for ouabain binding. Monovalent cations exert their effect at a single site (the “monovalent cation site”) and each monovalent cation can inhibit competitively the effect of other monovalent cations. Sodium, lithium, and cesium increase while potassium and rubidium decrease the apparent affinity with which ouabain is bound. Divalent cations exert their effect at a single site (the “divalent cation site”) which is functionally distinct from the site at which monovalent cations act and show mutual competitive inhibition. Each divalent cation studied increases the apparent affinity with which oubain binds to the erythrocyte membrane. Magnesium and calcium, but not barium, can also alter the effect of monovalent cations on ouabain binding. To interpret our findings we have proposed that the erythrocyte membrane has a “receptor complex” composed of a monovalent cation site, a divalent cation site and a glycoside-binding site. The number and type of cations occupying the cation sites determine the affinity of the glycoside-binding site for ouabain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, P. F., Willis, J. S. 1969. On the number of sodium pumping sites in cell membranes.Biochim. Biophys. Acta 183:646

    Google Scholar 

  2. Baker, P. F., Willis, J. S. 1970. Potassium ions and the binding of cardiac glycosides to mammalian cells.Nature 226:521

    Google Scholar 

  3. Baker, P. F., Willis, J. S. 1972. Binding of the cardiac glycoside ouabain to intact cells.J. Physiol. 224:441

    Google Scholar 

  4. Baker, P. F., Willis, J. S. 1972. Inhibition of the sodium pump in squid giant axons by cardiac glycosides: Dependence on extracellular ions and metabolism.J. Physiol. 224:463

    Google Scholar 

  5. Beaugé, L. A., Adragna, N. 1971. The kinetics of ouabain inhibition and the partition of rubidium influx in human red blood cells.J. Gen. Physiol. 57:576

    Google Scholar 

  6. Davidsohn, I., Wells, B. B. 1963. Clinical Diagnosis by Laboratory Methods. p. 73. W. B. Saunders Co., Philadelphia, Pa.

    Google Scholar 

  7. Draper, N., Smith, H. 1966. Applied Regression Analysis. Chapter 10, p. 263. John Wiley and Sons Inc., New York

    Google Scholar 

  8. Dunham, P. B., Hoffman, J. F. 1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep.J. Gen. Physiol. 58:94

    Google Scholar 

  9. Dunham, P. B., Hoffman, J. F. 1971. The number of Na+∶K+ pump sites on red blood cells from HK and LK lambs.Biochim. Biophys. Acta 241:399

    Google Scholar 

  10. Gardner, J. D., Conlon, T. P. 1972. The effects of sodium and potassium on ouabain binding by human erythrocytes.J. Gen. Physiol. 60:609

    Google Scholar 

  11. Gardos, G. 1961. The function of calcium in the regulation of ion transport.In: Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editors. p. 553. Academic Press Inc., New York

    Google Scholar 

  12. Gardos, G. 1968. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30:653

    Google Scholar 

  13. Garrahan, P. J., Glynn, I. M. 1967. The sensitivity of the sodium pump to external sodium.J. Physiol. (London) 192:175

    Google Scholar 

  14. Glynn, I. M. 1957. The action of cardiac glycosides on sodium and potassium movements in human red cells.J. Physiol. 136:148

    Google Scholar 

  15. Hoffman, J. F. 1962. The active transport of sodium by ghosts of human red blood cells.J. Gen. Physiol. 45:837

    Google Scholar 

  16. Hoffman, J. F. 1962. Cation transport and structure of the red-cell plasma membrane.Circulation 26:1201

    Google Scholar 

  17. Hoffman, J. F. 1969. The interaction between tritiated ouabain and the Na−K pump in red blood cells.J. Gen. Physiol. 54:343s

    Google Scholar 

  18. Hoffman, J. F., Ingram, C. J. 1968. Cation transport and the binding of T-ouabain to intact human red blood cells.Proc. First Int. Symp. Metabolism and Membrane Permeability of Erythrocytes and Thrombocytes, p. 420, Vienna

  19. Jarnefelt, J. 1962. Properties and possible mechanism of the Na+ and K+-stimulated microsomal adenosinetriphosphatase.Biochim. Biophys. Acta 59:643

    Google Scholar 

  20. Judah, J. D., Ahmed, K. 1963. Role of phosphoproteins in ion transport: Interactions of sodium with calcium and potassium in liver slices.Biochim. Biophys. Acta 71:34

    Google Scholar 

  21. Judah, J. D., Ahmed, K. 1964. The biochemistry of sodium transport.Biol. Rev. 39:160

    Google Scholar 

  22. Judah, J. D., Ahmed, K., McLean, A. E. M. 1962. Ion transport and phosphoproteins of human red cells.Biochim. Biophys. Acta 65:472

    Google Scholar 

  23. Kahn, J. B., Jr., Acheson, G. H. 1955. Effects of cardiac glycosides and other lactones and of certain other compounds, on cation transfer in human erythrocytes.J. Pharmacol. 115:305

    Google Scholar 

  24. Kregenow, F. M., Hoffman, J. F. 1972. Some kinetic and metabolic characteristics of calcium induced potassium transport in human red cells.J. Gen. Physiol. 60:406

    Google Scholar 

  25. Kyte, J. 1971. Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla.J. Biol. Chem. 246:4157

    Google Scholar 

  26. Kyte, J. 1972. The titration of the cardiac glycoside binding site of the (Na++K+)-adenosine triphosphatase.J. Biol. Chem. 247:7634.

    Google Scholar 

  27. Kyte, J. 1972. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase.J. Biol. Chem. 247:7642

    Google Scholar 

  28. Matsui, H., Schwartz, A., 1968. Mechanism of cardiac glycoside inhibition of the (Na+−K+)-dependent ATPase from cardiac tissue.Biochim. Biophys. Acta 151:655

    Google Scholar 

  29. Post, R. L., Jolly, P. C. 1957. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane.Biochim. Biophys. Acta 25:118

    Google Scholar 

  30. Priestland, R. N., Whittam, R. 1968. The influence of external sodium ions on the sodium pump in erythrocytes.Biochem. J. 109:369

    Google Scholar 

  31. Sachs, J. R., Welt, L. G. 1967. The concentration dependence of active potassium transport in the human red blood cell.J. Clin. Invest. 46:65

    Google Scholar 

  32. Schwartz, A., Lindenmayer, G. E., Allen, J. C. 1972. The Na+, K+-ATPase membrane transport system: Importance in cellular function.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. p. 1. Academic Press Inc., New York

    Google Scholar 

  33. Skou, J. C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves.Biochim. Biophys. Acta 23:394

    Google Scholar 

  34. Skou, J. C. 1960. Further investigations on a Mg+++Na+-activated adenosinetriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane.Biochim. Biophys. Acta 42:6

    Google Scholar 

  35. Skou, J. C. 1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane.Physiol. Rev. 45:596

    Google Scholar 

  36. Skou, J. C., Butler, K. W., Hansen, O. 1971. The effect of magnesium, ATP, Pi and sodium on the inhibition of the (Na++K+)-activated enzyme system byg-strophanthin.Biochim. Biophys. Acta 241:443

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, J.D., Frantz, C. Effects of cations on ouabain binding by intact human erythrocytes. J. Membrain Biol. 16, 43–64 (1974). https://doi.org/10.1007/BF01872406

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872406

Keywords

Navigation