Skip to main content
Log in

Na+-coupled glycine transport in reticulocyte vesicles of distinct sidedness: Stoichiometry and symmetry

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Sodium-coupled glycine transport has been studied using membrane vesicles of distinct sidedness, either inside-out or right side-out, prepared from sheep reticulocytes. The activity is chloride dependent and characterized by high and low apparent affinities for glycine (K′ m ≅0.5mm and >10mm) for both types of vesicles as well as intact cells. Transport is symmetrical with respect to similar apparent affinity constants for glycine, for both the high- and low-affinity systems, and for sodium. Direct measurements of the sodium/glycine coupling indicate a ratio of 2∶1, consistent with kinetic data fitted to a Hill-type equation describing glycine flux as a function of sodium concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, P.S. 1981. Identifying secondary active transport in epithelia.Am. J. Physiol. 240:FI-FII

    Google Scholar 

  • Benderoff, S., Johnstone, R.M., Blostein, R. 1978. Electrogenic sodium-dependent glycine transport in sheep reticulocytes.Can. J. Biochem. 56:545–551

    PubMed  Google Scholar 

  • Calquhoun, D. 1971. Lectures on Biostatistics. Clarendon, Oxford.

    Google Scholar 

  • Carruthers, A., Melchior, D.L. 1983. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer.Biochim. Biophys. Acta 728:254–266

    PubMed  Google Scholar 

  • Christensen, H.N., Cespedes, C. de, Handlogten, M.E., Ronquist, G. 1973. Energization of amino acid transport, studied for the Ehrlich ascites tumour cells.Biochim. Biophys. Acta 300:487–522

    PubMed  Google Scholar 

  • Christensen, H.N., Handlogten, M.F. 1981. Role of system gly in glycine transport in monolayer cultures of liver cells.Biochem. Biophys. Res. Commun. 15:102–107

    Google Scholar 

  • Crane, R.K. 1977. The gradient hypothesis and other models of carrier-mediated active transport.Rev. Physiol. Biochem. Pharmacol. 78:99–159

    PubMed  Google Scholar 

  • Curran, P.F., Hajjar, J.J., Glynn, I.M. 1970. The sodium-alanine interaction in rabbit iluem. Effect of alanine on sodium fluxes.J. Gen. Physiol. 55:297–308

    PubMed  Google Scholar 

  • Eavenson, E., Christensen, N. 1967. Transport systems for neutral amino acids in the pigeon erythrocyte.J. Biol. Chem. 242:5386–5396

    PubMed  Google Scholar 

  • Ellory, J.C., Jones, S.E.M., Young, J.D. 1981. Chloride-activated sodium-dependent glycine transport in human erythrocytes.J. Physiol. (London) 310:22P

    Google Scholar 

  • Glover, G.I., D'Ambrosio, S.M., Jensen, R.A. 1975. Versatile properties of a nonsaturable, homogeneous transport system inBacillus subtilis: Genetic, kinetic and affinity labeling studies.Proc. Natl. Acad. Sci. USA 72:814–818

    Google Scholar 

  • Goldner, A.M., Schultz, S.G., Curran, P.F. 1969. Sodium and sugar fluxes across the mucosal border of rabbit ileum.J. Gen. Physiol. 753:362–383

    Google Scholar 

  • Hopfer, U., Groseclose, R. 1980. The mechanism of sodium-dependentd-glucose transport.J. Biol. Chem. 255:4453–4462

    PubMed  Google Scholar 

  • Imler, J.R., Vidaver, G.A. 1972. Anion effects on glycine entry into pigeon red blood cells.Biochim. Biophys. Acta 288:153–165

    PubMed  Google Scholar 

  • Jarvis, S.M., Hammel, J.R., Paterson, A.R.P., Clanachan, A.S. 1982. Species differences in nucleoside transport. A simple carrier with directional symmetry in fresh cells, but with directional asymmetry in cells from outdated blood.Biochem. J. 210:457–461

    Google Scholar 

  • Johnstone, R.M. 1978. The basic asymmetry of Na+-dependent glycine transport in Ehrlich cells.Biochim. Biophys. Acta 512:199–213

    PubMed  Google Scholar 

  • Johnstone, R.M. 1979. Electrogenic amino acid transport.Can. J. Physiol. Pharmacol. 57:1–15

    Google Scholar 

  • Kimmich, G.A. 1973. Coupling between Na+ and sugar transport in small intestine.Rev. Biomembr. 300:31–78

    Google Scholar 

  • Kimmich, G.A. 1981. Gradient coupling in isolated intestinal cells.Fed. Proc. 40:2474–2479

    PubMed  Google Scholar 

  • Koser, B.H., Christensen, H.N. 1971. Effect of substrate structure on coupling ratio for Na+-dependent transport of amino acids.Biochim. Biophys. Acta 241:9–19

    PubMed  Google Scholar 

  • Lever, J.E. 1980. The use of membrane vesicles in transport studies.CRC Crit. Rev. Biochem. 7:187–246

    PubMed  Google Scholar 

  • Neal, J. 1972. Analysis of Michaelis kinetics for two independent, saturable membrane transport functions.J. Theor. Biol. 35:113–118

    PubMed  Google Scholar 

  • Okada, Y. 1979. Solute transport process in intestinal epithelial cells.Membr. Biochem. 2:339–365

    PubMed  Google Scholar 

  • Paterson, J.Y.F., Sepulveda, F.V., Smith, M.W. 1980. Stoichiometry versus coupling ratio in the cotransport of Na and different neutral amino acids.Biochim. Biophys. Acta 603:288–297

    PubMed  Google Scholar 

  • Schultz, S.G., Curran, P.F. 1980. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718

    Google Scholar 

  • Steck, T.L. 1974. Preparation of impermeable inside-out and right side-out vesicles from erythrocyte membranes.Methods Membr. Res. 2:245–281

    Google Scholar 

  • Steck, T.L., Weinstein, R.S., Strauss, J.H., Wallach, D.F.H. 1970. Inside-out red cell membrane vesicles: Preparation and purification.Science 169:255–257

    Google Scholar 

  • Tosteson, D.C., Gunn, R.B., Wieth, J.O. 1972. Chloride and hydroxyl ion conductance of sheep red cell membrane.In: Erythrocytes, Thrombocytes and Leukocytes. E. Gerlach, K. Moser, E. Deutch and W. Wilmanns, editors. pp. 62–66. Georg Thieme, Stuttgart

    Google Scholar 

  • Turner, R.J., Moran A. 1982a. Stoichiometric studies of the renal outer cortical brush border membraned-glucose transporter.J. Membrane Biol. 67:73–80

    Google Scholar 

  • Turner, R.J., Moran A. 1982b. Further studies of proximal tubular brush border membranesd-glucose transport heterogeneity.J. Membrane Biol. 70:37–45

    Google Scholar 

  • Vidaver, G.A. 1964a. Transport of glycine by pigeon red cells.Biochemistry 3:662–667

    Google Scholar 

  • Vidaver, G.A. 1964b. Glycine transport by hemolyzed and restored pigeon red cells.Biochemistry 3:795–799

    Google Scholar 

  • Vidaver, G.A., Shepherd, S.L. 1968. Transport of glycien by hemolyzed and restored pigeon red blood cells.J. Biol. Chem. 243:6140–6150

    PubMed  Google Scholar 

  • Vidaver, G.A., Shepherd, S.L., Lagow, J.B., Wiechelman, K.J. 1976. Glycine transport by hemolyzed and restored pigeon red cells. Effects of a Donnan-induced potential on entry and exit.Biochim. Biophys. Acta 443:494–514

    PubMed  Google Scholar 

  • Weigensberg, A.M., Blostein, R. 1983. Energy depletion retards the loss of membrane transport during reticulocyte maturation.Proc. Natl. Acad. Sci. USA 80:4978–4982

    PubMed  Google Scholar 

  • Weigensberg, A.M., Johnstone, R.M., Blostein, R. 1982. Reversal of Na+-dependent glycine transport in sheep reticulocyte membrane vesicles.J. Bioenerg. Biomembr. 14:335–345

    PubMed  Google Scholar 

  • Wheeler, K.P., Inui, Y., Hollenberg, P.F., Eavenson, E., Christensen, H.N. 1965. Relation of amino acid transport to sodium-ion concentration.Biochim. Biophys. Acta 109:620–622

    PubMed  Google Scholar 

  • Winter, C.G., Christensen, H.N. 1965. Contrasts in neutral amino acid transport by rabbit erythrocytes and reticulocytes.J. Biochem. 210:3594–3600

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigensberg, A.M., Blostein, R. Na+-coupled glycine transport in reticulocyte vesicles of distinct sidedness: Stoichiometry and symmetry. J. Membrain Biol. 86, 37–44 (1985). https://doi.org/10.1007/BF01871608

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871608

Key Words

Navigation