Skip to main content
Log in

Voltage dependence of Na/K pump current inXenopus oocytes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Stage V and VI (Dumont, J.N., 1972.J. Morphol. 136:153–180) oocytes ofXenopus laevis were treated with collagenase to remove follicular cells and were placed in K-free solution for 2 to 4 days to elevate internal [Na]. Na/K pump activity was studied by restoring the eggs to normal 3mm K Barth's solution and measuring membrane current-voltage (I–V) relationships before and after the addition of 10 μm dihydroouabain (DHO) using a two-microelectrode voltage clamp. Two pulse protocols were used to measure membraneI–V relationships, both allowing membrane currents to be determined twice at each of a series of membrane potentials: (i) a down-up-down sequence of 5 mV, 1-sec stair steps and (ii) a similar sequence of 1-sec voltage pulses but with consecutive pulses separated by 4-sec recovery periods at the holding potential (−40 mV). The resulting membraneI−V relationships determined both before and during exposure to DHO showed significant hysteresis between the first and second current measurements at each voltage. DHO difference curves also usually showed hysteresis indicating that DHO caused a change in a component of current that varied with time. Since, by definition, the steady-state Na/K pumpI−V relationship must be free of hysteresis, the presence of hysteresis in DHO differenceI−V curves can be used as a criterion for excluding such data from consideration as a valid measure of the Na/K pumpI−V relationship. DHO differenceI−V relationships that did not show hysteresis were sigmoid functions of membrane potential when measured in normal (90mm) external Na solution. The Na/K pump current magnitude saturated near 0 mV at a value of 1.0–1.5 μA cm−2, without evidence of negative slope conductance for potentials up to +55 mV. The Na/K pump current magnitude in Na-free external solution was approximately voltage independent. Since these forward-going Na/K pumpI−V relationships do not show a region of negative slope over the voltage range −110 to +55 mV, it is not necessary to postulate the existence of more than one voltage-dependent step in the reaction cycle of the forward-going Na/K pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahinski, A., Nakao, M., Gadsby, D.C. 1988. Potassium translocation by the Na/K pump is voltage insensitive.Proc. Natl. Acad. Sci. USA 85: 3412–3416

    Google Scholar 

  • Barish, M.E. 1983. A transient calcium-dependent chloride current in the immatureXenopus oocyte.J. Physiol. (London) 342: 309–325

    Google Scholar 

  • Barth, L.G., Barth, L.J. 1959. Differentiation of cells of theRana pipiens gastrula in unconditioned medium.J. Embryol. Exp. Morphol. 7: 210–222

    Google Scholar 

  • Baud, C., Kado, R.T., Marcher, K. 1982. Sodium channels induced by depolarization of theXenopus laevis oocyte.Proc. Natl. Acad. Sci. USA 79: 3188–3192

    Google Scholar 

  • Béhé, P., Turin, L. 1984. Arrest and reversal of the electrogenic sodium pump under voltage clamp.8th Intl. Biophys. Congress. p. 304. I. U. P. A. B., Bristol, U.K.

    Google Scholar 

  • Brinley, F.J., Jr., Mullins, L.J. 1974. Effects of membrane potential on sodium and potassium fluxes in squid axons.Ann. NY Acad. Sci. 242: 406–434

    Google Scholar 

  • Chapman, J.B., Johnson, E.A., Kootsey, J.M. 1983. Electrical and biochemical properties of an enzyme model of the sodium pump.J. Membrane Biol. 74: 139–153

    Google Scholar 

  • Dascal, N., Landau, E.M., Lass, Y. 1984.Xenopus oocyte resting potential, muscarinic responses and the role of calcium and guanosine 3′,5′-cyclic monophosphate.J. Physiol. (London) 352: 551–574

    Google Scholar 

  • De Weer, P. 1984. Electrogenic pumps: Theoretical and practical considerations.In: Electrogenic Transport: Fundamental Principles and Physiological Implications. M.P. Blaustein and M. Lieberman, editors. Society of General Physiologists Series. Vol. 38, pp. 1–15. Raven, New York

    Google Scholar 

  • De Weer, P. 1986. The electrogenic sodium pump: Thermodynamics and kinetics.Fortschr. Zool. 33: 387–399

    Google Scholar 

  • De Weer, P., Gadsby, D.C., Rakowski, R.F. 1988a. Stoichiometry and voltage dependence of the sodium pump.In: The Na,K-pump, Part A: Molecular Aspects. J.C. Skou et al., editors. pp. 421–434. Alan R. Liss, New York

    Google Scholar 

  • De Weer, P., Gadsby, D.C., Rakowski, R.F. 1988b. Voltage dependence of the Na−K pump.Annu. Rev. Physiol. 50: 225–241

    Google Scholar 

  • De Weer, P., Rakowski, R.F. 1984. Current generated by backward-running electrogenic Na pump in squid giant axons.Nature (London) 309: 450–452

    Google Scholar 

  • De Weer, P., Rakowski, R.F., Gadsby, D.C. 1987. Current-voltage relationships for the electrogenic sodium pump of squid giant axon.Biophys. J. 51: 385a

    Google Scholar 

  • Dumont, J.N. 1972. Oogenesis inXenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals.J. Morphol. 136: 153–180

    Google Scholar 

  • Eisner, D.A., Valdeolmillos, M., Wray, S. 1986. The voltagedependence of the Na−K pump in isolatedXenopus oocytes: Simultaneous measurement of membrane current and22Na efflux.J. Physiol. (London) 377: 84P

    Google Scholar 

  • Eisner, D.A., Valdeolmillos, M., Wray, S. 1987. The effects of membrane potential on active and passive Na transport inXenopus oocytes.J. Physiol. (London) 385: 643–659

    Google Scholar 

  • Gadsby, D.C. 1982. Hyperpolarization of frog skeletal muscle fibers and of canine Purkinje fibers during enhanced Na+−K+ exchange: Extracellular K+ depletion or increased pump current.Curr. Topics Membr. Transp. 16: 17–34

    Google Scholar 

  • Gadsby, D.C. 1984. The Na/K pump of cardiac cells.Annu. Rev. Biophys. Bioeng. 13: 373–398

    Google Scholar 

  • Gadsby, D.C., Kimura, J., Noma, A. 1985. Voltage depenence of Na/K pump current in isolated heart cells.Nature (London) 315: 63–65

    Google Scholar 

  • Gadsby, D.C., Nakao, M. 1987. [Na] dependence of the Na/K pump current-voltage relationship in isolated cells from guinea-pig ventricle.J. Physiol. (London) 382: 16P

    Google Scholar 

  • Gadsby, D.C., Noma, A. 1984. Voltage dependence of Na/K pump current in internally dialyzed cells from guinea pig ventricle.8th Intl. Biophys. Congress. p. 295. I.U.P.A.B., Bristol, U.K.

    Google Scholar 

  • Gadsby, D.C., Rakowski, R.F., De Weer, P. 1986. Voltage dependence of Na/K pump rate in squid giant axon.Biophys. J. 49: 36a

    Google Scholar 

  • Garrahan, P.J., Glynn, I.M. 1967. The stoichiometry of the sodium pump.J. Physiol. (London) 192: 217–235

    Google Scholar 

  • Hodgkin, A.L., Keynes, R.D. 1954. Movements of cations during recovery in nerve.Symp. Soc. Exp. Biol. 8: 423–437

    Google Scholar 

  • Hodgkin, A.L., Keynes, R.D. 1955. Active transport of cations in giant axons from Sepia and Loligo.J. Physiol. (London) 128: 28–60

    Google Scholar 

  • Isenberg, G., Trautwein, W. 1974. The effect of dihydro-ouabain and lithium ions on the outward current in cardiac Purkinje fibers.Pfluegers Arch. 350: 41–54

    Google Scholar 

  • Lafaire, A.V., Schwarz, W. 1985. Voltage-dependent, ouabainsensitive current in the membrane of oocytes ofXenopus laevis.In: The Sodium Pump. I. Glynn and C. Ellory, editors. pp. 523–525. Company of Biologists, Cambridge

    Google Scholar 

  • LaFaire, A.V., Schwarz, W. 1986. The voltage dependence of the rheogenic Na+/K+ ATPase in the membrane of oocytes ofXenopus laevis.J. Membrane Biol. 91: 43–51

    Google Scholar 

  • Läuger, P., Apell, H.-J. 1986. A microscopic model for the current-voltage behavior of the Na,K-pump.Eur. Biophys. J. 13: 309–321

    Google Scholar 

  • Marx, A., Ruppersberg, J.P., Rüdel, R. 1987. Dependence of the electrogenic pump current ofXenopus oocytes on external potassium.Pfluegers Arch. 408: 537–539

    Google Scholar 

  • Methfessel, C., Witzemann, V., Takahashi, T., Mishina, M., Numa, S., Sakmann, B. 1986. Patch clamp measurements onXenopus laevis oocytes: Currents through endogenous channels and implanted acetylcholine receptors and sodium channels.Pfluegers Arch. 407: 577–588

    Google Scholar 

  • Miledi, R. 1982. A calcium-dependent transient outward current inXenopus laevis oocytes.Proc. R. Soc. London 215: 491–497

    Google Scholar 

  • Miledi, R., Parker, I. 1984. Chloride current induced by injection of calcium intoXenopus oocytes.J. Physiol. (London) 357: 173–183

    Google Scholar 

  • Nakao, M., Gadsby, D.C. 1986. Voltage dependence of Na translocation by the Na/K pump.Nature (London) 323: 628–630

    Google Scholar 

  • Post, R.L., Jolly, P.C. 1957. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane.Biochim. Biophys. Acta 25: 118–128

    Google Scholar 

  • Rakowski, R.F. 1987. Voltage dependence of the electrogenic Na+/K+ pump inXenopus oocytes.J. Gen. Physiol. 90: 34a

    Google Scholar 

  • Rakowski, R.F., De Weer, P., Gadsby, D.C. 1988a. Current voltage relationship of the backward-running Na/K pump in voltage-clamped, internally dialyzed squid giant axons.Biophys. J. 53: 223a

    Google Scholar 

  • Rakowski, R.F., Gadsby, D.C., De Weer, P. 1988b. Stoichiometry and voltage dependence of the sodium pump in voltageclamped. internally dialyzed squid giant axon.J. Gen. Physiol. (in press)

  • Turin, L. 1982. Conductance changes associated with sodium pump inhibition in isolatedXenopus laevis blastomers.J. Gen. Physiol. 80: 6a

    Google Scholar 

  • Turin, L. 1984. Electrogenic pumping inXenopus blastomeres: Apparent pump conductance and reversal potential.In: Electrogenic Transport: Fundamental Principles and Physiologic Implications. M. Blaustein and M. Lieberman, editors. Society of General Physiologists Series, Vol. 38, pp. 345–351. Raven, New York

    Google Scholar 

  • Webb, D.J., Nuccitelli, R. 1985. Fertilization potential and electrical properties of theXenopus laevis egg.Dev. Biol. 107: 395–406

    Google Scholar 

  • Wu, M.W., Civan, M.M. 1988. Voltage dependence of strophanthidin-sensitive current ofRana oocytes.Biophys. J. 53: 139a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakowski, R.F., Paxson, C.L. Voltage dependence of Na/K pump current inXenopus oocytes. J. Membrain Biol. 106, 173–182 (1988). https://doi.org/10.1007/BF01871399

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871399

Key Words