Skip to main content
Log in

Current-voltage relations of sodium-coupled sugar transport across the apical membrane ofNecturus small intestine

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The current-voltage (I−V) relations of the rheogenic Na-sugar cotransport mechanism at the apical membrane ofNecturus small intestine were determined from the relations between the electrical potential difference across the apical membrane, Ψmc, and that across the entire epithelium, Ψms, when the latter was varied over the range ±200 mV, (i) under steady conditions in the presence of galactose and (ii) after the current across the apical membrane carried by the cotransporter,I mSNa , is blocked by the addition of phloridzin to the mucosal solution.I mSNa was found to be strongly dependent upon Ψmc over the range −50 mV < Ψmc <E mSNa whereE mSNa is the “zero current” or “reversal” potential. Over the range of values of Ψmc encountered under physiological conditions the cotransporter may be modeled as a conductance in series with an electromotive force so thatI mSNa =g mSNa (E mSNa − Ψmc) whereg mSNa is the contribution of this mechanism to the conductance of the apical membrane and is “near constant”. In several instancesI mSNa “saturated” at large hyperpolarizing or depolarizing values of Ψmc.

The values ofE mSNa determined in the presence of 1, 5, and 15mm galactose strongly suggest that if the Na-galactose cotransporters are kinetically homogeneous, the stoichiometry of this coupled process is unity.

Finally, the shapes of the observedI−V relations are consistent with the predictions of a simple kinetic model which conforms with current notions regarding the mechanico-kinetic properties of this cotransport process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus, H., Bakker, R., Heukelom, J.S. van 1983. Circuit analysis of membrane potential changes due to electrogenic sodium-dependent sugar transport in goldfish intestinal epithelium.Pfluegers Arch. 398:1–9

    Google Scholar 

  • Boulpaep, E.L., Sackin, H. 1980. Electrical analysis of intraepithelial barriers.Curr. Top. Membr. Transp. 13:169–197

    Google Scholar 

  • Brown, P.D., Sepulveda, F.V. 1985. Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum.J. Physiol. (London) 363:271–285

    Google Scholar 

  • Burckhardt, G., Murer, H. 1980. A cyanide dye as indicator of membrane electrical potential differences in brush border membrane vesicles: Studies with K gradients and Na/amino acid cotransport.Adv. Physiol. Sci. 11:409–418

    Google Scholar 

  • DeLong, J., Civan, M.M. 1984. Apical sodium entry in split frog skin: Current-voltage relationship.J. Membrane Biol. 82:25–40

    Google Scholar 

  • Frömter, E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport: I. Basic principles.Pfluegers Arch. 393:179–189

    Google Scholar 

  • Garcia-Diaz, J.F., Essig, A. 1985. Capacitative transients in voltage-clamped epithelia.Biophys. J. 48:519–523

    Google Scholar 

  • Geck, P., Heinz, E. 1976. Coupling in secondary transport: Effect of electrical potentials on the kinetics of ion linked cotransport.Biochim. Biophys. Acta 443:49–63

    Google Scholar 

  • Goldner, A.M., Schultz, S.G., Curran, P.F. 1969. Sodium and sugar fluxes across the mucosal border of rabbit ileum.J. Gen. Physiol. 53:362–383

    Google Scholar 

  • Grasset, E., Gunter-Smith, P., Schultz, S.G. 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes ofNecturus small intestine.J. Membrane Biol. 71:89–94

    Google Scholar 

  • Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodium-coupled amino acid and sugar transport byNecturus small intestine: An equivalent electrical circuit analysis of a rheogenic co-transport system.J. Membrane Biol. 66:25–39

    Google Scholar 

  • Gunter-Smith, P.J., White, J.F. 1979. Contribution of villus and intervillus epithelium to intestinal transmural p.d. and response to theophylline and sugar.Biochim. Biophys. Acta 557:425–435

    Google Scholar 

  • Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of Class-I mechanisms.J. Membrane Biol. 63:165–190

    Google Scholar 

  • Heinz, E., Geck, P. 1978. The electrical potential difference as a driving force in Na+-linked cotransport of organic solutes.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, pp. 13–30. Raven, New York

    Google Scholar 

  • Hopfer, U., Groseclose, R. 1980. The mechanism of Na-dependentd-glucose transport.J. Biol. Chem. 255: 4453–4462

    Google Scholar 

  • Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membrane from rat small intestine.J. Biol. Chem. 248:25–32

    Google Scholar 

  • Hudson, R.L., Schultz, S.G. 1984. Effects of sodium-coupled sugar transport on intracellular sodium activities and sodium-pump activity inNecturus small intestine.Science 224:1237–1239

    Google Scholar 

  • Iwatsuki, N., Petersen, O.H. 1980. Amino acid-evoked membrane potential and resistance changes in pancreatic acinar cells.Pfluegers Arch. 386:153–159

    Google Scholar 

  • Jacquez, J.A. 1972. Models of ion and substrate cotransport and the effect of the membrane potential.Math. Biosci. 13:71–93

    Google Scholar 

  • Kaunitz, J.D., Gunther, R., Wright, E.M. 1982. Involvement of multiple sodium ions in intestinald-glucose transport.Proc. Natl. Acad. Sci. USA 79:2315–2318

    Google Scholar 

  • Kaunitz, J.D., Wright, E.M. 1984. Kinetics of sodiumd-glucose cotransport in bovine intestinal brush border vesicles.J. Membrane Biol. 79:41–51

    Google Scholar 

  • Kessler, M., Semenza, G. 1983. The small-intestinal Na+,d-glucose cotransporter: An asymmetric gated channel (or pore) responsive to Δψ.J. Membrane Biol. 76:27–56

    Google Scholar 

  • Kimmich, G.A., Randles, J. 1980. Evidence for an intestinal Na: sugar transport coupling stoichiometry of 2.0.Biochim. Biophys. Acta 596:439–444

    Google Scholar 

  • Kimmich, G.A., Randles, J., Restrepo, D., Montrose, M. 1985. The potential dependence of the intestinal Na-dependent sugar transporter.Ann. N.Y. Acad. Sci. 456:63–76

    Google Scholar 

  • Kinter, W.B., Wilson, T.H. 1965. Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine.J. Cell Biol. 25:19–39

    Google Scholar 

  • Lang, F., Messner, G., Wang, W., Paulmichl, M., Oberleithner, H., Deetjen, P. 1984. The influence of intracellular sodium activity on the transport of glucose in proximal tubule of frog kidney.Pfluegers Arch. 401:14–21

    Google Scholar 

  • Lapointe, J.-Y., Laprade, R., Cardinal, J. 1984. Transepithelial and cell membrane resistances of the rabbit proximal tubule.Am. J. Physiol. 247:F637-F649

    Google Scholar 

  • Lau, K.R., Hudson, R.L., Schultz, S.G., 1984. Cell swelling induces a barium-inhibitable potassium conductance in the basolateral membrane ofNecturus small intestine.Proc. Natl. Acad. Sci. USA 81:3591–3594

    Google Scholar 

  • Laüger, P. 1980. Kinetic properties of ion carriers and channels.J. Membrane Biol. 57:163–178

    Google Scholar 

  • Messner, G., Oberleithner, H., Lang, F. 1985. The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney.Pfluegers Arch. 404:138–144

    Google Scholar 

  • Restrepo, D., Kimmich, G.A. 1985. The mechanistic nature of membrane potential dependence of sodium-sugar cotransport in small intestine.J. Membrane Biol. 87:159–172

    Google Scholar 

  • Sanders, D., Hansen, U.-P., Gradmann, D., Slayman, C.L. 1984. Generalized kinetic analysis of ion-driven cotransport systems: A unified interpretation of selective ionic effects on Michaelis parameters.J. Membrane Biol. 77:123–152

    Google Scholar 

  • Schultz, S.G. 1986. Ion-coupled transport of organic solutes across biological membranes.In: Physiology of Membrane Disorders. T.E. Andreoli, J.F. Hoffman, D.D. Fanestil, and S.G. Schultz, editors. pp. 283–294. Plenum, New York

    Google Scholar 

  • Schultz, S.G., Fuisz, R.E., Curran, P.F. 1966. Amino acid and sugar transport in rabbit ileum.J. Gen. Physiol. 49:849–866

    Google Scholar 

  • Schultz, S.G., Thompson, S.M., Hudson, R., Thomas, S.R., Suzuki, Y. 1984. Errata.J. Membrane Biol. 80:271

    Google Scholar 

  • Semenza, G., Kessler, M., Schmidt, U., Venter, J.C., Fraser, C.M. 1985. The small-intestinal sodium-glucose cotransporter(s).Ann. N.Y. Acad. Sci. 456:83–96

    Google Scholar 

  • Thomas, S.R., Suzuki, Y., Thompson, S.M., Schultz, S.G. 1983. The electrophysiology ofNecturus urinary bladder: I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations.J. Membrane Biol. 73:157–175

    Google Scholar 

  • Thompson, S.M. 1986. Relations between chord and slope conductances and equivalent electromotive forces.Am. J. Physiol. 250:C333-C339.

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of rabbit descending colon: I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism.J. Membrane Biol. 66:41–54

    Google Scholar 

  • Turner, R.J. 1985. Stoichiometry of cotransport systems.Ann. N.Y. Acad. Sci. 456:10–25

    Google Scholar 

  • Turner, R.J., Moran, A. 1982a. Stoichiometric studies of the renal outer cortical brush border membraned-glucose transporter.J. Membrane Biol. 67:73–80

    Google Scholar 

  • Turner, R.J., Moran, A. 1982b. Heterogeneity of sodium-dependentd-glucose transport sites along the proximal tubule: Evidence from vesicle studies.Am. J. Physiol. 242:F406-F414

    Google Scholar 

  • Warncke, J., Lindemann, B. 1980. Effect of ADH on the capacitance of apical epithelial membranes.In: Advances in Physiological Sciences. Vol. 3: Physiology of Non-Excitable Cells. J. Salanki, editor. pp. 129–133. Pergamon, New York

    Google Scholar 

  • Wright, E.M. 1984. Electrophysiology of plasma membrane vesicles.Am. J. Physiol. 246:F363-F372

    Google Scholar 

  • Wright, E.M., Peerce, B.E. 1985. Sodium-dependent conformational changes in the intestinal glucose carrier.Ann. N.Y. Acad. Sci. 456:108–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapointe, JY., Hudson, R.L. & Schultz, S.G. Current-voltage relations of sodium-coupled sugar transport across the apical membrane ofNecturus small intestine. J. Membrain Biol. 93, 205–219 (1986). https://doi.org/10.1007/BF01871175

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871175

Key Words

Navigation