Skip to main content
Log in

Detection of sodium channel distribution in rat sciatic nerve following lysophosphatidylcholine-induced demyelination

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In vivo application of lysophosphatidylcholine (LPC) to rat sciatic nerve induces impaired hind leg movement within 2 days which is recovered by 6 days. Segmental demyelination was seen at 2 days after LPC application, and remyelination had barely started in a few axons by 6 days. Using sodium channel-specific monoclonal antibodies and immunofluorescence microscopy, we observed altered distribution of sodium channels in demyelinated axons. Bright fluorescent labeling was found along the segmentally demyelinated axolemma at 6 days in contrast to the dim staining of the demyelinated nerve found at 2 days. In addition, radioimmunoassays detected an elevated number of antibody binding sites on sciatic nerve trunk from the sixth day. Our data provide the immunocytochemical evidence for the assumption that recruitment of sodium channels into demyelinated axolemma contributes to the recovery of function following axon demyelination by LPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barhanin, J., Meiri, H., Romey, G., Pouron, D., Lazdunski, M. 1985. A monoclonal immunotoxin acting on the sodium channel with properties similar to those of scorpion toxin.Proc. Natl. Acad. Sci. USA 82:1842–1846

    PubMed  Google Scholar 

  2. Black, J.A., Sims, T.J., Waxman, S.G., Gilmore, S.A. 1985. Membrane ultrastructure of axons in glial cell deficient spinal cord.J. Neurocytol. 14:79–104

    PubMed  Google Scholar 

  3. Bostock, H., Sears, T. 1978. The internodal axon membrane: Electrical excitability and continuous conduction in segmental demyelination.J. Physiol. (London) 280:273–301

    Google Scholar 

  4. Brismar, T. 1981. Specific permeability properties of demyelinated rat nerve fibres.Acta Phsyiol. Scand. 113:167–176

    Google Scholar 

  5. Chiu, S.Y., Ritchie, J.M. 1980. Potassium channels in nodal and internodal membrane in mammalian myelinated fibres.Nature (London) 284:170–171

    Google Scholar 

  6. Chiu, S.Y., Shrager, P., Ritchie, J.M. 1984. Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells.Nature (London) 311:156–157

    Google Scholar 

  7. Chiu, S.Y., Shrager, P., Ritchie, J.M. 1985. Loose patch clamp recording of ionic currents in demyelinated frog nerve fibers.Brain Res. 359:338–342

    PubMed  Google Scholar 

  8. Coria, R., Berciano, M.T., Berciano, J., Lafarga, M. 1984. Axon membrane remodelling in the lead-induced demyelinating neuropathy of the rat.Brain Res. 291:369–372

    PubMed  Google Scholar 

  9. Cragg, B.G., Thomas, P.K. 1964. The conduction velocity of regenerated peripheral nerve fibers.J. Physiol. (London) 171:164–179

    Google Scholar 

  10. Devor, M., Govrin-Lipmann, R. 1983. Axoplasmic transport block reduces impulse generation in injured peripheral nerve.Pain 16:73–79

    PubMed  Google Scholar 

  11. Ellisman, M.H. 1984. A transcellular filament network that interconnects cells in tissues.Soc. Neurosci. Abstr. 10:44

    Google Scholar 

  12. Foster, R.E., Whalen, C.C., Waxman, S.G. 1980. Reorganization of the axon membrane in the demyelinated peripheral nerve fibers: Morphological evidence.Science 210:661–663

    PubMed  Google Scholar 

  13. Hoch, D.H., Romero-Mira, M., Ehrlich, B.E., Finkelstein, A., Das Gupta, B., Simpson L.L. 1985. Channel formed by botulinum, tetanus and diphtheria toxin in planar lipid bilayer: Relevance to translocation of proteins across membranes.Proc. Natl. Acad. Sci. USA 82:1692–1695

    PubMed  Google Scholar 

  14. Hodgkin, A.L., Rushton, W.A.H. 1946. The electrical constants of crustacean nerve fiber.Proc. R. Soc. London B 133:444–479

    Google Scholar 

  15. Huxley, A.F., Stampfeli, R. 1949. Evidence for saltattory conduction in peripheral myelinated nerve fibers.J. Physiol. (London) 18:315–339

    Google Scholar 

  16. Lafontaine, S., Rasminsky, M., Saida, T., Sumner, A.T. 1982. Conduction block in rat myelinated fibers following acute exposure to anti-galactocerebroside serum.J. Physiol. (London) 323:287–306

    Google Scholar 

  17. Lowery, O.H., Rosebrough, N.J., Farr, R.J., Randall, J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  18. McDonald, W.I., Sears, T.A. 1970. The effect of experimental demyelination on conduction in the central nervous sytem.Brain 93:583–598

    PubMed  Google Scholar 

  19. Meiri, H. 1986. Detection of cell surface sodium channels by monoclonal antibodies—could the channels become exposed to the external surface and “down regulated” by binding to antibodies?Brain Res. 368:188–192

    PubMed  Google Scholar 

  20. Meiri, H., Goren, E., Bergman, H., Zeitoun, I., Rosenthal, Y., Palti, Y. 1986. Specific modification of sodium channels in mammalian nerve by monoclonal antibodies.Proc. Natl. Acad. Sci. USA (in press)

  21. Meiri, H., Pri-Chen, S., Korczyn, A.D. 1985. Sodium channel localization in rat sciatic nerve following lead-induced demyelination.Brain Res. 359:326–331

    PubMed  Google Scholar 

  22. Meiri, H., Zeitoun, I., Grunhagen, H.H., Lev-Ram, V., Eshhar, Z., Schlessinger, J. 1984. Monoclonal antibodies associated with sodium channels that block nerve impulse and stain nodes of Ranvier.Brain Res. 310:168–173

    PubMed  Google Scholar 

  23. Parnas, I., Segev, I. 1979. A mathematical model for conduction of action potential along bifurcating axons.J. Physiol. (London) 295:323–343

    Google Scholar 

  24. Quick, D.C., Waxman, S.G. 1977. Ferric ion, ferrocyanide, and inorganic phosphate as cytochemical reactants at peripheral nodes of Ranvier.J. Neurocytol. 6:555–570

    PubMed  Google Scholar 

  25. Rasminsky, M. 1984. Pathophysiology of demyelination.In: Multiple Sclerosis: Experimental and Clinical Aspects.Ann. N.Y. Acad. Sci. 436:68–80

  26. Rasminsky, M., Kearney, R.E., Aguayo, A.J., Bray, E.M. 1978. Conduction of nervous impulses in spinal roots and peripheral nerves of dystrophic mice.Brain Res. 143:71–85

    PubMed  Google Scholar 

  27. Rieger, I., Pincon-Raymond, M., Lombet, A., Ponzio, G., Lazdunski, M., Sidman, R. 1984. Paranodal dysmyelination and increase in tetrodotoxin-binding sites in the sciatic nerve of the motor end-plate disease (med/med) mouse during postnatal development.Dev. Biol. 101:401–409

    PubMed  Google Scholar 

  28. Ritchie, J.M., Rang, H.P. 1983. Extraneuronal saxitoxin binding sites in rabbit myelinated nerve.Proc. Natl. Acad. Sci. USA 83:2803–2808

    Google Scholar 

  29. Ritchie, J.M., Rang, H.P., Pellegrino, R. 1981. Sodium and potassium channels in demyelinated and remyelinated mammalian nerve.Nature (London) 294:257–259

    Google Scholar 

  30. Ritchie, J.M., Rogart, R.B. 1977. The density of sodium channels in mammalian myelinated fibers and the nature of the axolemmal membrane under the myelin sheath.Proc. Natl. Acad. Sci. USA 74:211–215

    PubMed  Google Scholar 

  31. Rosenbluth, J. 1976. Intramembranous particle distribution at the nodes of Ranvier and adjacent axolemma in myelinated axons of the frog brain.J. Neurocytol. 5:731–745

    PubMed  Google Scholar 

  32. Schnapp, S., Mugonaini, E. 1979. Freeze fracture properties of central myelin in the bull frog.Neuroscience 76:459–475

    Google Scholar 

  33. Shrager, P., Chiu, S.Y., Ritchie, J.M. 1985. Voltage dependent sodium and potassium channels in mammalian cultured Schwann cells.Proc. Natl. Acad. Sci. USA 82:948–953

    PubMed  Google Scholar 

  34. Sears, T.A., Bostock, H. 1981. Conduction failure in demyelination: Is it inevitable?In: Demyelinating Disease: Basic and Clinical Electrophysiology, Advances in Neurology. S.G. Waxman and J.M. Ritchie, editors. Vol. 31, pp. 357–375. Raven, New York

    Google Scholar 

  35. Smith, K.J., Bostock, H., Hall, S.M. 1982. Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline.J. Neurol. Sci. 54:13–31

    PubMed  Google Scholar 

  36. Smith, K.J., Hall, S.M. 1980. Nerve conduction during peripheral demyelination and remyelination.J. Neurol. Sci. 48:201–219

    PubMed  Google Scholar 

  37. Targ, E., Kocsis, J.D. 1985. 4-Aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve.Brain Res. 328:358–362

    PubMed  Google Scholar 

  38. Waxman, S.G., Brill, M.H. 1978. Conduction through demyelinated plaques in multiple sclerosis: Computer simulation of facilitation by short internodes.J. Neurol. Neurosurg. Psych. 41:400–417

    Google Scholar 

  39. Waxman, S.G., Foster, R.E. 1980. Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers.Brain Res. Rev. 2:205–234

    Google Scholar 

  40. Waxman, S.G., Wood, S.L. 1984. Impulse conduction in inhomogeneous axons: Effects of variation in voltage-sensitive ionic conductances on invasion of demyelinated-axon segments and preterminal fibers.Brain Res. 294:111–112

    PubMed  Google Scholar 

  41. Weiner, L.P., Waxman, S.G., Stuhlman, S.A., Kwan, A. 1980. Remyelination following viral-induced demyelination. Ferric ion-ferrocyanide staining at nodes of Ranvier within CNS.Ann. Neurol. 8:580–583

    PubMed  Google Scholar 

  42. Wiley-Livingston, C.A., Ellisman, M.H. 1982. Return of axonal and glial membrane specializations during remyelination after tellurium-induced demyelination.J. Neurocytol. 11:65–80

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiri, H., Steinberg, R. & Medalion, B. Detection of sodium channel distribution in rat sciatic nerve following lysophosphatidylcholine-induced demyelination. J. Membrain Biol. 92, 47–56 (1986). https://doi.org/10.1007/BF01869015

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869015

Key Words

Navigation