Skip to main content
Log in

The kinetic mechanism by which CCCP (carbonyl cyanidem-Chlorophenylhydrazone) transports protons across membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We demonstrate that a simple kinetic model describes the transport of protons across lipid bilayer membranes by the weak acid CCCP (carbonyl cyanidem-chlorophenylhydrazone). Four parameters characterize this model: the adsorption coefficients of the anionic and neutral forms of the weak acid onto the interface (β A andβ HA) and the rate constants for the movement of A and HA across the membrane (k A andk HA). These parameters were determined by equilibrium dialysis, electrophoretic mobility, membrane potential, membrane conductance, and spectrophotometric measurements. From these equilibrium and steady state measurements on diphytanoyl phosphatidylcholine/chlorodecane membranes we found thatβ A=β HA=1.4 10-3cm,k A=175 s−1 andk HA=12,000 sec−1. These parameters and our model describe our kinetic experiments if we assume that the protonation reactions, which occur at the interfaces, remain at equilibrium. The model predicts a single exponential decay of the current in a voltage-clamp experimetn. The model also predicts that the decay in the voltage across the membrane following an intense current pulse of short duration (≈50 nsec) can be described by the sum of two exponentials. The magnitudes and time constants of the relaxations that we observed in both voltage-clamp and charge-pulse experiments agree well with the predictions of the model for all values of pH, voltage and [CCCP].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, O., Feldberg, S., Nakadomari, H., Levy, S., McLaughlin, S. 1978. Electrostatic potentials associated with the absorption of tetraphenylborate into lipid bilayer membranes.In: Membrane Transport Processes. Vol. 2, pp. 325–334. D.C. Tosteson, Yu.A. Ovchinnikov, and R. LaTorre, editors. Raven Press, New York

    Google Scholar 

  2. Aveyard, R., Haydon, D.A. 1973. An Introduction to the Principles of Surface Chemistry. Cambridge University Press, London

    Google Scholar 

  3. Bangham, A.D., Hill, M.W., Miller, N.G.A. 1974. Preparation and use of liposomes as models of biological membranes.Methods Membr. Biol. 1:1–68

    Google Scholar 

  4. Barenholz, Y., Gibbes, D., Litman, B.J., Goll, J., Thompson, T.E., Carlson, F.D. 1977. A simple method for the preparation of homogeneous phospholipid vesicles.Biochemistry 16:2806–2810

    Google Scholar 

  5. Benz, R., Läuger, P., Janko, K. 1976. Transport kinetics of hydrophobic ions in lipid bilayer membranes: Charge pulse relaxation studies.Biochim. Biophys. Acta 455:701–720

    Google Scholar 

  6. Benz, R., McLaughlin, S. 1983. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanidep-trifluoromethoxyphenylhydrazone).Biophys. J. 41:381–398

    Google Scholar 

  7. Bhattacharyya, P., Barnes, E.M., Jr. 1976. ATP-dependent calcium transport in isolated membrane vesicles fromAzobacter vinelandii.J. Biol. Chem. 251:5614–5619

    Google Scholar 

  8. Cohen, F.S., Eisenberg, M., McLaughlin, S. 1977. The kinetic mechanism of action of an uncoupler of oxidative phosphorylation.J. Membrane Biol. 37:361–396

    Google Scholar 

  9. Dilger, J., McLaughlin, S. 1979. Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles.J. Membrane Biol. 46:359–384

    Google Scholar 

  10. Eigen, M., Kruse, W., Maass, G., De Maeyer, L. 1964. Rate constants of protolytic reactions in aqueous solution.Prog. React. Kinet. 2:287–318

    Google Scholar 

  11. Grinius, L.L., Jasaitis, A.A., Kadziauskas, Yu.P., Liberman, E.A., Skulachev, V.P., Topali, V.P., Tsofina, L.M. Vladimirova, M.A. 1970. Conversion of biomembrane-produced energy into electric form: I. Submitochondrial particles.Biochim. Biophys. Acta 216:1–12

    Google Scholar 

  12. Hall, J.E., Mead, C.A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75–97

    Google Scholar 

  13. Harold, F.M. 1977. Membranes and energy transduction in bacteria.Curr. Top. Bioenerg. 6:83–149

    Google Scholar 

  14. Heytler, P.G. 1963. Uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones: I. Some characteristics ofm-Cl-CCP action on mitochondria and chloroplasts.Biochemistry 2:357–361

    Google Scholar 

  15. Heytler, P.G., Prichard, W.W. 1962. A new class of uncoupling agents—carbonyl cyanide phenylhydrazones.Biochem. Biophys. Res. Commun. 7:272–275

    Google Scholar 

  16. Hladky, S.B. 1974. The energy barriers to ion transport by nonaction across thin lipid membranes.Biochim. Biophys. Acta 352:71–85

    Google Scholar 

  17. Hopfer, U., Lehninger, A.L., Thompson, T.E. 1968. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation.Proc. Natl. Acad. Sci. USA 59:484–490

    Google Scholar 

  18. LeBlanc, O.H., Jr. 1971. The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone.J. Membrane Biol. 4:227–251

    Google Scholar 

  19. Lee, A.G. 1978. Effects of charged drugs on the phase transition temperatures of phospholipid bilayers.Biochim. Biophys. Acta 514:95–104

    Google Scholar 

  20. Liberman, E.A., Topaly, V.P., Tsofina, L.M., Jasaitis, A.A., Skulachev, V.P. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria.Nature (London) 222:1076–1078

    Google Scholar 

  21. Lowry, R.R., Tinsley, I.J. 1974. A simple sensitive method for lipid phosphorus.Lipids 9:491–492

    Google Scholar 

  22. McLaughlin, A., Eng, W.-K., Vaio, G., Wilson, T., McLaughlin, S. 1983. Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes.J. Membrane Biol. 76:183–193

    Google Scholar 

  23. McLaughlin, S. 1977. Electrostatic potentials at membranesolution interfaces.Curr. Top. Membr. Transp. 9:71–144

    Google Scholar 

  24. McLaughlin, S.G.A., Dilger, J.P. 1980. Transport of protons across membranes by weak acids.Physiol. Rev. 60:825–863

    Google Scholar 

  25. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature (London) 191:144–148

    Google Scholar 

  26. O'Shaughnessy, K., Hladky, S.B. 1983. Transient currents carried by the uncoupler, carbonyl cyanidem-chlorophenylhydrazone.Biochim. Biophys. Acta 724:381–387

    Google Scholar 

  27. Peterkofsky, A., Gazdar, C. 1979.Escherichia coli adenylate cyclase complex: Regulation by the proton electrochemical gradient.Proc. Natl. Acad. Sci. USA 76:1099–1103

    Google Scholar 

  28. Ramos, S., Schuldiner, S., Kaback, H.R. 1976. The electrochemical gradient of protons and its relationship to active transport inEscherichia coli membrane vesicles.Proc. Natl. Acad. Sci. USA 73:1892–1896

    Google Scholar 

  29. Reyes, J., Benos, D.J. 1984. Changes in interfacial potentials induced by carbonylcyanide-phenylhydrazone uncouplers Possible role in inhibition of mitochondrial oxygen consumption and other transport processes.Membr. Biochem. 5:243–268

    Google Scholar 

  30. Sjogren, R.E., Gibson, M.J. 1981. Bacterial survival in a dilute environment.Appl. Environ. Microbiol. 41:1331–1336

    Google Scholar 

  31. Skulachev, V.P., Sharaf, A.A., Liberman, E.A. 1967. Proton conductors in the respiratory chain and artificial membranes.Nature (London) 216:718–719

    Google Scholar 

  32. Tanford, C. 1978. The hydrophobic effect and the organization of living matter.Science 200:1012–1018

    Google Scholar 

  33. Terada, H. 1981. The interaction of highly active uncouplers with mitochondria.Biochim. Biophys. Acta 639:225–242

    Google Scholar 

  34. Tsien, R.Y., Hladky, S.B. 1982. Ion repulsion within membranes.Biophys. J. 39:49–56

    Google Scholar 

  35. Verkman, A.S., Solomon, A.K. 1980. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes.J. Gen. Physiol. 75:673–692

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasianowicz, J., Benz, R. & McLaughlin, S. The kinetic mechanism by which CCCP (carbonyl cyanidem-Chlorophenylhydrazone) transports protons across membranes. J. Membrain Biol. 82, 179–190 (1984). https://doi.org/10.1007/BF01868942

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868942

Key Words

Navigation