Skip to main content
Log in

Acute and chronic effects of angiotensin converting enzyme inhibitors on the essential hypertensive kidney

  • Focused Section: Angiotensin Converting Enzyme Inhibition: Renal Aspects
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The natural course of essential hypertensive renal disease is characterized by a slowly progressive impairment of renal function. Initially, the changes are functional and reversible; however, structural changes gradually occur, leading to hypertensive nephrosclerosis. Similarities exist between the early functional hemodynamic changes observed in the essential hypertensive kidney and the physiologic renal effects of angiotensin II. To the degree that the initial functional changes are the result of excessive endogenous production of angiotensin II, interruption of the integrity of this humoral system could be expected to reverse the pathophysiologic sequence of events leading to hypertensive nephrosclerosis.

This review focuses on the pathophysiology of the essential hypertensive kidney, the intrarenal effects of angiotensin II, and the acute and chronic effects of angiotensin converting enzyme (ACE) inhibition therapy on the essential hypertensive kidney. The data reviewed suggest that ACE inhibition therapy does reverse the initial functional hemodynamic changes observed in the essential hypertensive kidney and may protect the glomerulus from hemodynamically mediated injury

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldring W, Chasis H, Ranges HA, Smith HW. Effective renal blood flow in subjects with essential hypertension.J Clin Invest 1941;20:637–653.

    Google Scholar 

  2. Chasis H, Redish J. Effective renal blood flow in the separate kidneys of subjects with essential hypertension.J Clin Invest 1941;20:655–661.

    Google Scholar 

  3. Friedman M, Selzer A, Rosenblum H. The renal blood flow in hypertension.JAMA 1941;117:92–95.

    Google Scholar 

  4. Foa PP, Woods WW, Peet MM, Foa NL. Effective renal blood flow, glomerular filtration rate and tubular excretory mass in arterial hypertension.Arch Intern Med 1942;69: 822–835.

    Google Scholar 

  5. Corcoran AC, Taylor RD, Page IH. Functional patterns in renal disease.Arch Intern Med 1948;28:560–582.

    Google Scholar 

  6. Gomez DM. Evaluation of renal resistances, with special reference to changes in essential hypertension.J Clin Invest 1951;30:1143–1155.

    PubMed  Google Scholar 

  7. Hollenberg NK, Epstein M, Basch RI, Merrill JP. “No man's land” of the renal vasculature.Am J Med 1969;47:845–4.

    PubMed  Google Scholar 

  8. Birkenhager WH, Schalekamp MADH, Krauss XH, Kolsters G, Schalekamp-Kuyken MPA, Kroon BJM, Teulings FAG. Systemic and renal hemodynamics, body fluids and renin in benign essential hypertension with special reference to natural history.Eur J Clin Invest 1972;2:115–122.

    PubMed  Google Scholar 

  9. Reubi FC, Weidmann P, Hodler J, Cottier PT. Changes in renal function in essential hypertension.Am J Med 1978;64:556–563.

    PubMed  Google Scholar 

  10. de Leeuw PW, Kho TL, Falke HE, Birkenhager WH, Wester A. Hemodynamics and endocrinological profile in essential hypertension.Acta Med Scand 1978;(Suppl 622):1–86.

    Google Scholar 

  11. Ljungman S, Aurell M, Hartford M, Wikstrand J, Wilhelmsen L, Berglund G. Blood pressure and renal function.Acta Med Scand 1980;208:17–25.

    PubMed  Google Scholar 

  12. Bauer JH, Brooks CS, Burch RN. Renal function and hemodynamic studies in low- and normal-renin essential hypertension.Arch Intern Med 1982;142:1317–1323.

    PubMed  Google Scholar 

  13. Lindeman RD, Tobin JD, Shock NW. Association between blood pressure and the rate of decline in renal function with age.Kid Int 1984;26:861–868.

    Google Scholar 

  14. London GM, Safar ME, Sassard JE, Levenson JA, Simon AC. Renal and systemic hemodynamics in sustained essential hypertension.Hypertension 1984;6:743–754.

    PubMed  Google Scholar 

  15. Bell ET, Clawson BJ. Primary (essential) hypertension, a study of four hundred and twenty cases.Arch Pathol 1928;5:939–1002.

    Google Scholar 

  16. McGregor L. Histological changes in the renal glomerulus in essential (primary) hypertension.Am J Pathol 1930;6:347–369.

    Google Scholar 

  17. Castleman B, Smithwick RH. The relation of vascular disease to the hypertensive state.JAMA 1943;121:1256–1261.

    Google Scholar 

  18. Castleman B, Smithwick RH. The relationship of vascular disease to the hypertensive state.N Engl J Med 1948;239;729–732.

    Google Scholar 

  19. Smith DE, Odel HM, Kernohan JW. Causes of death in hypertension.Am J Med 1950;9:516–527.

    PubMed  Google Scholar 

  20. Perera GA. Hypertensive vascular disease; description and natural history.J Chron Dis 1955;1:33–42.

    PubMed  Google Scholar 

  21. Moyer JH, Heider CH, Pevey JK, Ford RV. The vascular status of a heterogenous group of patients with hypertension, with particular emphasis on renal function.Am J Med 1958;24:164–176.

    PubMed  Google Scholar 

  22. Magee JH, Unger AM, Richardson DW. Changes in renal function associated with drug or placebo therapy of human hypertension.Am J Med 1964;36:795–804.

    PubMed  Google Scholar 

  23. Hollenberg NK, Adams DF, Solomon H, Chenitz WR, Burger BM, Abrams HL, Merrill JP. Renal vascular tone in essential and secondary hypertension.Medicine 1975;54:29–44.

    PubMed  Google Scholar 

  24. Williams GF, Hollenberg NK. Accentuated vascular and endocrine response to SQ 20881 in hypertension.N Engl J Med 1977;297:184–188.

    PubMed  Google Scholar 

  25. Hollenberg NK, Borucki LJ, Adams DF. The renal vasculature in essential hypertension: Evidence for a pathogenetic role.Medicine 1978;57:167–178.

    PubMed  Google Scholar 

  26. Hollenberg NK, Swartz SL, Passan DR, Williams GH. Increased glomerular filtration rate after converting enzyme inhibitors in essential hypertension.N Engl J Med 1979; 301:9–12.

    PubMed  Google Scholar 

  27. Meggs LG, Hollenberg NK. Converting enzyme inhibition and the kidney.Hypertension 1980;2:551–557.

    PubMed  Google Scholar 

  28. Hollenberg NK, Meggs LG, Williams GH, Katz J, Garnic JD, Harrington DP. Sodium intake and renal responses to captopril in normal man and in essential hypertension.Kidney Int 1981;20:240–245.

    PubMed  Google Scholar 

  29. Shoback DM, Williams GH, Moore TJ, Dluhy RG, Podolsky S, Hollenberg NK. Defect in the sodiummodulated tissue responsiveness to angiotensin II in essential hypertension.J Clin Invest 1983;72:2115–2124.

    PubMed  Google Scholar 

  30. Bauer JH, Gaddy P. Effects of enalapril alone, and in combination with hydrochlorothiazide, on renin-angiotensinaldosterone, renal function, salt and water excretion, and body fluid composition.Am J Kidney Dis 1985;6:222–232.

    PubMed  Google Scholar 

  31. Redgrave J, Rabinowe S, Hollenberg NK, Williams GH. Correction of abnormal renal blood flow response to angiotensin II by converting enzyme inhibition in essential hypertension.J Clin Invest 1985;75:1285–1290.

    PubMed  Google Scholar 

  32. Sommers SC, Rehman AS, Smithwick RH. Histological studies of kidney biopsy specimens from patients with hypertension.Am J Pathol 1958;34:685–715.

    PubMed  Google Scholar 

  33. McManus JFA, Lupton CH. Ischemic obsolescence of renal glomeruli.Lab Invest 1960;9:413–434.

    Google Scholar 

  34. McGee WG, Ashworth CT. Fine structure of chronic hypertensive arteriopathy in the human kidney.Am J Pathol 1963;43:273–299.

    PubMed  Google Scholar 

  35. Heptinstall RH. Hypertension: II. Essential hypertension. In:Pathology of The Kidney, Vol 1, 3rd ed. Boston. Little, Brown and Company, 1983:181–246.

    Google Scholar 

  36. DiBona GF, Rios LL. Mechanism of exaggerated diuresis in spontaneously hypertensive rats.Am J Physiol 1978;235:F409–F416.

    Google Scholar 

  37. Azar S, Johnson MA, Scheinman J, Bruno L, Tobian L. Regulation of glomerular capillary pressure and filtration rate in young Kyoto hypertensive rats.Clin Sci 1979;56:203–209.

    PubMed  Google Scholar 

  38. Arendshorst WJ, Beierwalters WH. Renal and nephron hemodynamics in spontaneously hypertensive rats.Am J Physiol 1979;236:F246–F251.

    PubMed  Google Scholar 

  39. Parving HH, Jensen HAE, Mogensen CE, Ervin PE. Increased urinary albumin-excretion rate in benign essential hypertension.Lancet 1974;1:1190–1192.

    PubMed  Google Scholar 

  40. Pedersen EB, Mogensen CF. Effect of antihypertensive treatment on urinary albumin excretion, glomerular filtration rate and renal plasma flow rate in patients with essential hypertension.Scand J Clin Lab Invest 1976;36:231–237.

    PubMed  Google Scholar 

  41. Pedersen EB. Some aspects of kidney function, the reninaldosterone system and sympathetic activity in essential hypertension.Acta Med Scand 1980;(Suppl 636):1–66.

    Google Scholar 

  42. Giaconi S, Levanti C, Fommei E, Innocenti F, Seghieri G, Palla L, Palombo C, Ghione S. Microalbuminuria and casual and ambulatory blood pressure monitoring in normotensives and in patients with borderline and mild essential hypertension.Am J Hypertens 1989;2:259–261.

    PubMed  Google Scholar 

  43. Yamada T, Ishihara M, Ichikawa K, Hiramatsu K. Proteinuria and renal function during antihypertensive treatment for essential hypertension.J Am Geriat Soc 1980;28:114–117.

    PubMed  Google Scholar 

  44. Morduchowicz G, Boner G, Ben-Bassat N, Rosenfeld JB. Proteinuria in benign nephrosclerosis.Arch Intern Med 1986;146:1513–1516.

    PubMed  Google Scholar 

  45. Dworkin LD, Feiner HD. Glomerular injury in unnephrectomized spontaneously hypertensive rats. A consequence of glomerular capillary hypertension.J Clin Invest 1986;77:797–809.

    PubMed  Google Scholar 

  46. Moyer JH, Heider C, Pevey K, Ford RV. The effect of treatment on the vascular deterioration associated with hypertension, with particular emphasis on renal function.Am J Med 1958;24:177–192.

    PubMed  Google Scholar 

  47. Reubi FC. The late effects of hypotensive drug therapy on renal functions of patients with essential hypertension. In: Bock KD, Cottier PT, eds.Essential Hypertension: An International Symposium. Berlin: Springer-Verlag, 1960;317–331.

    Google Scholar 

  48. Veterans Administration Cooperative Study Group on Antihypertensive Agents. Effects of treatment on morbidity in hypertension II. Results in patients with diastolic blood pressures averaging 90 through 114 mmHg.JAMA 1970;213:1143–1152.

    Google Scholar 

  49. Brazy PC, Stead WW, Fitzwilliam JF. Progression of renal insufficiency: Role of blood pressure.Kidney Int 1989;35:670–674.

    PubMed  Google Scholar 

  50. Mitchell HC, Graham RM, Pettinger WA. Renal function during long-term treatment of hypertension with minoxidil. Comparison of benign and malignant hypertension.Ann Intern Med 1980;93:676–681.

    PubMed  Google Scholar 

  51. Campese VM. Minoxidil: A review of its pharmacological properties and therapeutic use.Drugs 1981;22:257–278.

    PubMed  Google Scholar 

  52. Hartford M, Wendelhag I, Berglund G, Wallentin I, Ljungman S, Wikstrand J. Cardiovascular and renal effects of long-term antihypertensive treatment.JAMA 1988;259:2553–2557.

    PubMed  Google Scholar 

  53. Ljungman S, Aurell M, Hartford M, Wikstrand J, Berglund G. Renal function before and after withdrawal of longterm antihypertensive treatment in primary hypertension.Drugs 1988;35(Suppl 5):55–58.

    PubMed  Google Scholar 

  54. Rostand SG, Brown G, Kirk K, Rutsky EA, Dustan HP. Renal insufficiency in treated essential hypertension.N Engl J Med 1989;320:684–688.

    PubMed  Google Scholar 

  55. End-Stage Renal Disease Patient Profile Tables—1986. ESRD Information Analysis Branch, Division of Information Analysis. US Department of Health and Human Services. Health Care Financing Administration, Bureau of Data Management and Safety.

  56. Final Report of the National CAPD Registry. Patient characteristics, selected outcome measures and special topics for the period January 1, 1981, through January 31, 1988. The Emmes Corporation, Potomac, MD. 1988:3-1–3-8.

  57. Shulman NB. End-stage renal disease in hypertensive blacks.J Clin Hypertens 1987;3:85S–88S.

    PubMed  Google Scholar 

  58. McClellan W, Tuttle E, Issa A. Racial differences in the incidence of hypertensive end-stage renal disease (ESRD) are not entirely explained by differences in the prevalence of hypertension.Am J Kidney Dis 1988;12:285–290.

    PubMed  Google Scholar 

  59. Feld LG, van Liew JB, Brentjens JR, Boylan JW. Renal lesions and proteinuria in the spontaneously hypertensive rat made normotensive by treatment.Kidney Int 1981;20:606–614.

    PubMed  Google Scholar 

  60. Raij L, Chiou XC, Owens R, Wrigley B. Therapeutic implications of hypertension-induced glomerular injury.Am J Med 1985;79(Suppl 3C):37–41.

    Google Scholar 

  61. Anderson S, Meyer TH, Rennke HG, Brenner BM. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass.J Clin Invest 1985;76:612–619.

    PubMed  Google Scholar 

  62. Tsuruda H, Okuda S, Onoyama K, Oh Y, Fujishima M. Effect of blood pressure on the progress of renal deterioration in rats with renal mass reduction.J Lab Clin Med 1986;107:43–50.

    PubMed  Google Scholar 

  63. Anderson S, Rennke HG, Brenner BM. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat.J Clin Invest 1986;77:1993–2000.

    PubMed  Google Scholar 

  64. Dworkin LD, Feiner HD, Randazzo J. Glomerular hypertension and injury in deoxycorticosticosterone-salt rats on antihypertensive therapy.Kidney Int 1987;31:718–724.

    PubMed  Google Scholar 

  65. Meyer TW, Anderson S, Rennke HG, Brenner BM. Reversing glomerular hypertension stabilizes established glomerular injury.Kidney Int 1987;31:752–759.

    PubMed  Google Scholar 

  66. Garcia DL, Rennke HG, Brenner BM, Anderson S. Chronic glucocorticoid therapy amplifies glomerular injury in rats with renal ablation.J Clin Invest 1987;80:867–874.

    PubMed  Google Scholar 

  67. Yoshioka T, Shiraga H, Yoshida Y, Fogo A, Glick AD, Deen WM, Hoyer JR, Ichikawa I. “Intact nephrons” as the primary origin of proteinuria in chronic renal disease.J Clin Invest 1988;82:1614–1623.

    PubMed  Google Scholar 

  68. Celio MR, Inagami T. Angiotensin II immunoreactivity coexists with renin in the juxtaglomerular granular cells of the kidney.Proc Natl Acad Sci USA 1981;78:3897–3900.

    PubMed  Google Scholar 

  69. Ingelfinger JR, Pratt RE, Ellison K, Dzau VJ. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla.J Clin Invest 1986;78:1311–1315.

    PubMed  Google Scholar 

  70. Hackenthal E, Metz R, Buhrle CP, Taugner R. Intrarenal and intracellular distribution of renin and angiotensin.Kidney Int 1987;31(Suppl 20):S4–S17.

    Google Scholar 

  71. Mendelsohn FAO, Millan M, Quirion R, Aguilera G, Chou S-T, Catt KJ. Localization of angiotensin II receptors in rat and monkey kidney by in vitro autoradiography.Kidney Int 1987;31(Suppl 20):S40–S44.

    Google Scholar 

  72. Gomez RA, Lynch KR, Chevalier RL, Everett AD, Johns DW, Wilfong N, Peach MJ, Carey RM. Renin and angiotensinogen gene expansion and intrarenal renin distribution during ACE inhibition.Am J Physiol 1988;254:F900–F906.

    PubMed  Google Scholar 

  73. Bruneval P, Fournier J-G, Soubrier F, Belair M-F, DaSilva J-L, Guetier C, Pinet F, Tardivel I, Corvol P, Bariety J, Camilleri J-P. Detection and localization of renin messenger RNA in human pathologic tissues using in situ hybridization.Am J Pathol 1988;131:320–330.

    PubMed  Google Scholar 

  74. Sakaguchi K, Chai SY, Jackson B, Johnston CI, Mendelsohn FAO. Inhibition of tissue angiotensin converting enzyme. Quantitation by autoradiography.Hypertension 1988;11:230–238.

    PubMed  Google Scholar 

  75. Levens NR, Peach MJ, Carey RM. Role of the intrarenal renin-angiotensin system in the control of renal function.Cric Res 1981;48:157–167.

    Google Scholar 

  76. Mendlesohn FAO. Angiotensin II: Evidence for its role as an intrarenal hormone.Kidney Int 1982;22(Suppl 12):S78–S81.

    Google Scholar 

  77. Campbell DJ. The site of angiotensin production.J Hypertens 1985;3:199–207.

    PubMed  Google Scholar 

  78. Dzau VJ. Significance of the vascular renin-angiotensin pathway.Hypertension 1986;8:553–559.

    PubMed  Google Scholar 

  79. Campbell DJ. Circulating and tissue angiotensin systems.J Clin Invest 1987;79:1–6.

    PubMed  Google Scholar 

  80. Myers BD, Dean WM, Brenner BM. Effects of norepinephrine and angiotensin II as the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat.Circ Res 1975;37:101–110.

    PubMed  Google Scholar 

  81. Hall JE, Guyton AC, Jackson TE, Coleman TG, Lohmeier TE, Trippodo NC. Control of glomerular filtration rate by renin-angiotensin system.Am J Physiol 1977;233:F366–F372.

    PubMed  Google Scholar 

  82. Hall JE, Coleman TG, Guyton AC, Balfe JW, Salgado HC. Intrarenal role of angiotensin II and [des-Asp'] angiotensin II.Am J Physiol 1979;236:F252–F259.

    PubMed  Google Scholar 

  83. Ichikawa I, Miele JF, Brenner BM. Reversal of renal cortical actions of angiotensin II by verapamil and manganese.Kidney Int 1979;16:137–147.

    PubMed  Google Scholar 

  84. Hsu CH, Kurtz TW, Slavicek JM. Effect of exogenous angiotensin II on renal hemodynamics in the awake rat. Measurement of afferent arteriolar diameter by the microsphere method.Circ Res 1980;46:646–650.

    PubMed  Google Scholar 

  85. Edwards RM. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels.Am J Physiol 1983;244:F526–F534.

    PubMed  Google Scholar 

  86. Kastner PR, Hall JE, Guyton AC. Control of glomerular filtration rate: Role of intrarenally formed angiotensin II.Am J Physiol 1984;246:F897–F906.

    PubMed  Google Scholar 

  87. Lohmeier TE, Cowley AW Jr, Trippodo NC, Hall JE, Guyton AC. Effects of endogenous angiotensin II on renal sodium excretion and renal hemodynamics.Am J Physiol 1977;233:F388–F395.

    PubMed  Google Scholar 

  88. Ichikawa I, Brenner BM. Importance of efferent arteriolar vascular tone in regulation of proximal tubule fluid reabsorption and glomerulotubular balance in the rat.J Clin Invest 1980;65:1192–1201.

    PubMed  Google Scholar 

  89. Hall JE. Control of sodium excretion by angiotensin II: Intrarenal mechanisms and blood pressure regulation.Am J Physiol 1986;250:R960–R972.

    PubMed  Google Scholar 

  90. Harris PJ, Young JA. Dose-dependent stimulation of proximal tubular sodium reabsorption by angiotensin II in the rat kidney.Pflügers Arch 1977;367:295–297.

    Google Scholar 

  91. Huang WC, Ploth DW, Navar LG. Angiotensin-mediated alterations in nephon function in Goldblatt hypertensive rats.Am J Physiol 1984;243:F553–F560.

    Google Scholar 

  92. Pelayo JC, Blantz RC. Analysis of renal denervation in the hydropenic rat: Interactions with angiotensin II.Am J Physiol 1984;246:F87–F95.

    PubMed  Google Scholar 

  93. Schuster VL, Kokko JP, Jacobsen HR. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules.J Clin Invest 1984;73:507–515.

    PubMed  Google Scholar 

  94. Romero JC, Knox FG. Mechanisms underlying pressurerelated natriuresis: The role of the renin-angiotensin and prostaglandin systems.Hypertension 1988;11:724–738.

    PubMed  Google Scholar 

  95. Chou SY, Foubert PF, Porush JG. Contributions of angiotensin to the control of medullary hemodynamics.Fed Proc 1986;45:1438–1443.

    PubMed  Google Scholar 

  96. Faubert PF, Chou SY, Porush JG. Regulation of papillary plasma flow by angiotensin II.Kidney Int 1987;32:472–478.

    PubMed  Google Scholar 

  97. Blantz RC, Konnen KS, Tucker BJ. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat.J Clin Invest 1976;57:419–434.

    PubMed  Google Scholar 

  98. Baylis C, Brenner BM. Modulation by prostaglandin synthesis inhibitors on the action of exogenous angiotensin II on glomerular ultrafiltration in the rat.Circ Res 1978;43:889–898.

    PubMed  Google Scholar 

  99. Ausiello DA, Kreisberg JI, Roy C. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin.J Clin Invest 1980;65:754–760.

    PubMed  Google Scholar 

  100. Schor N, Ichikawa I, Brenner BM. Mechansims of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat.Kidney Int 1981;20:442–451.

    PubMed  Google Scholar 

  101. Blantz RC, Pelayo JC. In vivo actions of angiotensin II on glomerular function.Fed Proc 1983;42:3071–3074.

    PubMed  Google Scholar 

  102. Ardaillore R, Sraer J, Chansel D, Ardaillore N, Sraer JD. The effects of angiotensin II on isolated glomeruli and cultured glomerular cells.Kidney Int 1987;31(Suppl 20):S74–S80.

    Google Scholar 

  103. Andrews PM, Coffey AK. Cytoplasmic contractile elements in glomerular cells.Fed Proc 1983;42:3046–3052.

    PubMed  Google Scholar 

  104. Kreisberg JI. Contractile properties of the glomerular mesangium.Fed Proc 1983;42:3053–3057.

    PubMed  Google Scholar 

  105. Hornych H, Beaufils M, Richet G. The effects of exogenous angiotension on superficial and deep glomeruli in the rat kidney.Kidney Int 1972;2:336–343.

    PubMed  Google Scholar 

  106. Eisenbach GM, Van Liew JB, Boylan JW. Effect of angiotensin on the filtration of protein in the rat kidney: A micropuncture study.Kidney Int 1975;8:80–87.

    PubMed  Google Scholar 

  107. Bohrer MP, Deen WM, Robertson CR, Brenner BM. Mechanism of angiotensin II induced proteinuria in the rat.Am J Physiol 1977;233:F13–F21.

    PubMed  Google Scholar 

  108. Deen WM, Bohrer MP, Brenner BM. Macromolecular transport across glomerular capillaries.Kidney Int 1979;16:353–365.

    PubMed  Google Scholar 

  109. Olivetti G, Kithier K, Giacomelli F, Wiener J. Glomerular permeability to endogenous proteins in the rat. Effects of acute hypertension.Lab Invest 1981;44:127–137.

    PubMed  Google Scholar 

  110. Stein HD, Feddergreen W, Kashgarian M, Sterzel RB. Role of angiotensin II-induced renal functional changes in mesangial deposition of exogenous ferritin in rats.Lab Invest 1983;49:270–280.

    PubMed  Google Scholar 

  111. Keane WF, Raij L. Relationship among altered glomerular barrier permselectivity, angiotensin II, and mesangial uptake of macromolecules.Lab Invest 1985;52:599–604.

    PubMed  Google Scholar 

  112. Raij L, Keane WF. Glomerular mesangium: Its function and relationship to angiotensin II.Am J Med 79:1985 (Suppl 3C):24–30.

    Google Scholar 

  113. Yoskioka T, Mitarai T, Kon V, Dean WM, Rennke HG, Ichikawa I. Role for angiotensin II in an overt functional proteinuria.Kidney Int 1986;30:538–545.

    PubMed  Google Scholar 

  114. Michael AF, Keane WF, Raij L, Vernier RL, Mau SM. The glomerular mesangium.Kidney Int 1980;17:141–154.

    PubMed  Google Scholar 

  115. Olson JL, Hostetter TH, Rennke HG, Brenner BM, Vonkktachalam MA. Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass.Kidney Int 1982;22:112–126.

    PubMed  Google Scholar 

  116. Gavras H, Brunner HR, Laragh JH, Sealey JE, Gavras I, Vukovich RA. An angiotensin converting enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients.N Engl J Med 1974;291:817–821.

    PubMed  Google Scholar 

  117. Case DB, Wallace JM, Keim HJ, Weber MA, Sealey JE, Laragh JH: Possible role of renin in hypertension as suggested by renin-sodium profiling and inhibition of converting enzyme.N Engl J Med 1977;296:641–646.

    PubMed  Google Scholar 

  118. Johnston CI, Millar JA, McGrath BP, Matthews PG. Longterm effects of captopril (SQ14225) on blood pressure and hormonal levels in essential hypertension.Lancet 1979;2:493–496.

    PubMed  Google Scholar 

  119. Atlas SA, Case DB, Sealey JE, Laragh JH, McKinstry DN. Interruption of the renin-angiotensin system in hypertensive patients by captopril induces sustained reduction in aldosterone secretion, potassium retention and natriuresis.Hypertension 1979;1:274–280.

    PubMed  Google Scholar 

  120. Textor SC, Brunner HR, Gavras H. Converting enzyme inhibition during chronic angiotensin II infusion in rats.Hypertension 1981;3:269–275.

    PubMed  Google Scholar 

  121. Unger T, Schull B, Hubner D, Yukimura T, Lang RE, Rascher W, Ganten D. Plasma converting enzyme activity does not reflect effectiveness of oral treatment with captopril.Eur J Pharmacol 1981;72:255–259.

    PubMed  Google Scholar 

  122. Velletri P, Bean BL. Comparison of the time course of action of captopril on angiotensin-converting enzyme with the time course of its antihypertensive effect.J Cardiovasc Pharmacol 1981;3:1068–1081.

    PubMed  Google Scholar 

  123. Cohen ML, Kurz KD. Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK421.J Pharmacol Exp Ther 1982;220:63–69.

    PubMed  Google Scholar 

  124. Unger T, Schull B, Rascher W, Lang RE, Ganten D. Selective activation of the converting enzyme inhibitor MK421 and comparison of its active diacid form with captopril in different tissues of rat.Biochem Pharmacol 1982;31:3063–3070.

    PubMed  Google Scholar 

  125. Velletri P, Bean BL. The effects of captopril on rat aortic angiotensin-converting enzyme.J Cardiovasc Pharmacol 1982;4:315–325.

    PubMed  Google Scholar 

  126. Unger T, Ganten D, Lang RE, Scholkens BA. Is tissue converting enzyme inhibition a determinant of the antihypertensive efficacy of converting enzyme inhibitors?J Cardiovasc Pharmacol 1984;6:872–880.

    PubMed  Google Scholar 

  127. Unger T, Ganten D, Lang RE, Scholkens BA. Persistent tissue converting enzyme inhibition following chronic treatment with Hoe498 and MK421 in spontaneously hypertensive rats.J Cardiovasc Pharmacol 1985;7:36–41.

    PubMed  Google Scholar 

  128. Ikemoto F, Tanaka M, Itoh S, Song GB, Tominaga M, Hiruma M, Takoda T, Nakamura N, Yamamoto K. Angiotensin converting enzyme (ACE) in the kidney: Contribution to blood pressure regulation and possible role of brush-border ACE.J Cardiovasc Pharmacol 1986;8(Suppl 10):S69–S74.

    Google Scholar 

  129. Nambu K, Matsumoto K, Takeyama K, Hosoki K, Miyazaki H, Hashimoto M. Tissue levels, tissue angiotensin converting enzyme inhibition and antihypertensive effect on the novel antihypertensive agent alacepril in renal hypertensive rats.Arzneim Forsch 1986;36(1):47–51.

    Google Scholar 

  130. Moursi MG, Ganten D, Lang RE, Unger J. Antihypertensive action and inhibition of tissue converting enzyme (CE) by three prodrug CE inhibitors, enalapril, ramipril and perindopril in stroke-prone spontaneously hypertensive rats.J Hypertens 1986;4(Suppl 3):S495-S498.

    Google Scholar 

  131. Engel SL, Schaeffer TR, Gold BI, Rubin B. Inhibition of pressor effects of angiotensin I and augmentation of depressor effects of bradykinin by synthetic peptides (36433).Proc Soc Exp Biol Med 1972;140:240–244.

    PubMed  Google Scholar 

  132. Thurston H, Swales JD. Converting enzyme inhibitor and saralasin infusion in rats.Circ Res 1978;42:588–592.

    PubMed  Google Scholar 

  133. Swartz SL, Williams GH, Hollenberg NK, Moore TJ, Dluhy RG. Converting enzyme inhibition in essential hypertension: The hypertensive response does not reflect only reduced angiotensin II formation.Hypertension 1979;1:106–111.

    PubMed  Google Scholar 

  134. Vinci JM, Horwitz D, Zusman RM, Pisano JJ, Catt KJ, Keiser HR. The effect of converting enzyme inhibition with SQ20, 881 on plasma and urinary kinins, prostaglandin E, and angiotensin II in hypertensive man.Hypertension 1979;1:416–426.

    PubMed  Google Scholar 

  135. Mimran A, Targhetta R, Laroche B. The antihypertensive effect of captopril.Hypertension 1980;2:732–737.

    PubMed  Google Scholar 

  136. Benetos A, Gavras H, Stewart JM, Vavrek RJ, Hatinoglou S, Gavras I. Vasodepressor role of endogenous bradykinin assessed by a bradykinin antagonist.Hypertension 1986;8:971–974.

    PubMed  Google Scholar 

  137. Carbonell LF, Carretero OA, Stewart JM, Scicli AG. Effect of a kinin antagonist on the acute antihypertensive activity of enalaprilat in severe hypertension.Hypertension 1988;11:239–243.

    PubMed  Google Scholar 

  138. Swartz SL, Williams GH, Hollenberg NK, Levine L, Dluhy RG, Moore TJ. Captopril induced changes in prostaglandin production.J Clin Invest 1980;65:1257–1264.

    PubMed  Google Scholar 

  139. Moore TJ, Crantz FR, Hollenberg NK, Koletsky RJ, Leboff MS, Swartz SL, Levine L, Podolsky S, Dluhy RG, Williams GH. Contribution of prostaglandins to the antihypertensive action of captopril in essential hypertension.Hypertension 1981;3:168–173.

    PubMed  Google Scholar 

  140. Silberbauer K, Stanek B, Templ H. Acute hypotensive effect of captopril in man modified by prostaglandin synthesis inhibition.Br J Clin Pharmacol 1982;14:87s–93s.

    PubMed  Google Scholar 

  141. Witzgall H, Hirsch F, Scherer B, Weber PC. Acute hemodynamic and hormonal effects of captopril are diminished by indomethacin.Clin Sci Mol Med 1982;62:611–615.

    Google Scholar 

  142. Galler M, Backenroth R, Folkert VW, Schlondorff D. Effect of converting enzyme inhibitors on prostaglandin synthesis by isolated glomeruli and aortic strips from rats.J Pharmacol Exp Therap 1982;220:23–28.

    Google Scholar 

  143. Oliver JA, Sciacca RR, Cannon PJ. Renal vasodilation by converting enzyme inhibition. Role of renal prostaglandins.Hypertension 1983;5:166–171.

    PubMed  Google Scholar 

  144. Antonaccio MJ, Kerwin L. Pre-and post-junctional inhibition of vascular sympathetic function by captopril in SHR.Hypertension 3 1981; (Suppl 1): 154–162.

    Google Scholar 

  145. Imai Y, Abe K, Seino M, Haruyama T, Tajima J, Yoshinaga K, Sekino H. Captopril attenuates pressor responses to norepinephrine and vasopressin through depletion of endogenous angiotensin II.Am J Cardiol 1982;49:1537–1539.

    PubMed  Google Scholar 

  146. Eikenburg DC. Effects of captopril on vascular noradrenergic transmission in SHR.Hypertension 1984;6:660–665.

    PubMed  Google Scholar 

  147. Richer C, Doussau M-P, Giudicelli J-F. Influence of captopril and enalapril on regional vascular alpha-adrenergic receptor reactivity in SHR.Hypertension 1984;6:666–674.

    PubMed  Google Scholar 

  148. Cline WH Jr. Enhanced in vivo responsiveness of presynaptic angiotensin II receptor-mediated facilitation of vascular adrenergic neurotransmission in spontaneously hypertensive rats.J Pharmacol Exp Ther 1985;232:661–669.

    PubMed  Google Scholar 

  149. Westfall TC, Xue CS, Meldrum MJ, Bodino L. Effect of low sodium diet on the facilitatory effect of angiotensin on3H-norepinephrine release in the rat portal vein.Blood Vessels 1985;22:13–24.

    PubMed  Google Scholar 

  150. Mimran A, Brunner HR, Turini GA, Waeber B, Brunner D. Effect of captopril on renal vascular tone in patients with essential hypertension.Clin Sci 1979;57:421s–423s.

    PubMed  Google Scholar 

  151. Brunner HR, Gavras H, Waeber B, Textor SC, Turini GA, Wauters JP. Clinical use of an orally acting converting enzyme inhibitor: Captopril.Hypertension 1980;2:558–566.

    PubMed  Google Scholar 

  152. Pessina AC, Gatta A, Semplicini A, Rossi GP, Casiglia E, Milani L, Amodio P, Merkel C, Pagnan A, Dal Palu C. Hypotensive and renal effects of captopril.Eur J Clin Invest 1981;11:409–413.

    PubMed  Google Scholar 

  153. Aldigier JC, Plouin PF, Guyene TT, Thibonnier M, Corvol P, Menard J. Comparison of the humoral and renal effects of captopril in severe essential and renovascular hypertension.Am J Cardiol 1982;49:1447–1452.

    PubMed  Google Scholar 

  154. Kiowski W, Van Brummelen P, Hulthen L, Amann FW, Buhler FR. Antihypertensive and renal effects of captopril in relation to renin activity and bradykinin-induced vasodilation.Clin Pharmacol Ther 1981;31:677–684.

    Google Scholar 

  155. Palla R, Marchitiello ME, Sassano P, Salvetti A. Effects of captopril on renal function in patients with essential hypertension.Am J Cardiol 1982;49:1577–1579.

    PubMed  Google Scholar 

  156. Duchin KL, Willard DA. The effect of captopril on renal hemodynamics in hypertensive patients.J Clin Pharmacol 1984;24:351–359.

    PubMed  Google Scholar 

  157. Ando K, Fujita T, Ito Y, Noda H, Yamashita K.The role of renal hemodynamics in the antihypertensive effect of captopril.Am Heart J 1986;111:347–352.

    PubMed  Google Scholar 

  158. Rasmussen S, Leth A, Ibsen H, Nielsen MD, Nielsen F, Giese J. Converting enzyme inhibition in mild and moderate essential hypertension II.Acta Med Scand 1986:219:29–36.

    PubMed  Google Scholar 

  159. Shionoiri H, Yasuda G, Takagi N Oda H, Young SC, Miyajima LS, Umemura S, Gotoh E, Sesoko S, Uneda S, Kaneko Y. Renal hemodynamics and comparative effects of captopril in patients with benign—or malignant—essential hypertension, or with chronic renal failure.Clin Exper Theory Practice 1987;A9 (2 & 3):543–549.

    Google Scholar 

  160. De Venuto G, Andveotti C, Mattarei M, Pegoretti G. Prolonged treatment of essential hypertension and renal function: Comparison of captopril and beta blockers considering microproteinuire values.Curr Ther Res 1988;38:710–718

    Google Scholar 

  161. Ventura HO, Frohlich ED, Messerli FH, Kobrin I, Kardon MB. Cardiovascular effects and regional blood flow distribution associated with angiotensin converting enzyme inhibitor (captopril) in essential hypertension.Am J Cardiol 1985;55:1023–1026.

    PubMed  Google Scholar 

  162. Thomsen OO, Danielsen H, Sorensen SS, Pedersen EB. Effects of captopril on renal hemodynamics and the reninagiotensin-aldosterone and osmoregulatory systems in essential hypertension.Eur J Clin Pharmacol 1986:30:1–6.

    PubMed  Google Scholar 

  163. Frohlich ED, Cooper RA, Lewis EJ. Review of the overall experience of captopril in hypertension.Arch. Intern Med 1984:144:1441–1444.

    PubMed  Google Scholar 

  164. Case DB, Atlas SA, Mouradian JA, Frishaman RA, Sherman RL, Laragh JH, Proteinuria during long-term captopril therapy.JAMA 1980;24:346–349.

    Google Scholar 

  165. Hoorntje SJ, Donker AJM, Prins ESL, Weening JJ. Membranous glomerulopathy in a patient on captopril.Acta Med Scand 1980;208:325–329.

    PubMed  Google Scholar 

  166. Lewis EJ. Proteinuria and abnormalities of the renal glomerulus in patients with hypertension.Clin Exp Pharmacol Physiol 7 (Suppl) 1982:105–115.

    Google Scholar 

  167. Sturgill BC, Shearlock KT. Membranous glomerulopathy and nephrotic syndrome after captopril therapy.JAMA 1983;250:2343–2345.

    PubMed  Google Scholar 

  168. Textor SC, Gephardt GN, Bravo EL, Tarazi RC, Fouad FM, Tubbs R, McMahon JT. Membranous glomerulopathy associated with captopril therapy.Am J Med 1983;74:705–712.

    PubMed  Google Scholar 

  169. Sunderrajan S, Luger A, Bauer JH. Captopril-induced membranous glomerulopathy.South Med J 1983;76:1294–1297.

    PubMed  Google Scholar 

  170. Madeddu P, Ena P, Dessi-Fulgheri P, Glorioso N, Cerimele D, Rappelli A. Captopril-induced proteinuria in hypertensive psoriatic patients.Nephron 1986;44:358–360.

    PubMed  Google Scholar 

  171. Navis G, deJong PE, Donker AJM, Van der Hem GK, de Zeeuw D. Effects of enalaprilic acid on sodium excretion and renal hemodynamics in essential hypertension.J Clin Hypertens 1985;3:228–238.

    Google Scholar 

  172. Sanchez RA, Marco E, Gilbert HB, Raffaele P, Brito M, Gimenez M, Moledo LI. Natriuretic effect and changes in renal hemodynamics induced by enalapril in essential hypertension.Drugs 1985;30 (Suppl 1):49–58.

    PubMed  Google Scholar 

  173. Larochelle P, Gutkowska J, Schiffrin E, Kuchel O, Hamet P, Genest J. Effect of enalapril on renin angiotensin converting enzyme, aldosterone and prostaglandins in patients with hypertension.Clin Invest Med 1985;8:197–201.

    PubMed  Google Scholar 

  174. Navis GJ, deJong PE, Donker AJM,deZeeuw D. Effects of enalapril on blood pressure and renal hemodynamics in essential hypertension.Proc. Eur Dial Transplant Assoc 1983;20:577–581.

    PubMed  Google Scholar 

  175. Simon G, Morioka S, Snyder DK, Cohn JN. Increased renal plasma flow in long-term enalapril treatment of hypertension.Clin Pharmacol Ther 1983;34:459–465.

    PubMed  Google Scholar 

  176. Bauer JH, Jones LB. Comparative studies: Enalapril vs. hydrochlorothiazide as first-step therapy for the treatment of primary hypertension.Am J Kidney Dis 1984;4:55–62.

    PubMed  Google Scholar 

  177. Dunn FG, Oigman W, Ventura HO, Messerli FH, Kobrin I, Frohlich ED. Systemic and renal effects of enalapril and its effects on cardiac mass.J Hypertens 1984;2 (Suppl 2):57–61.

    Google Scholar 

  178. O'Connor DT, Mosley CA, Cervenka J, Bernstein KN. Contrasting renal hemodynamic responses to the angiotensin converting enzyme inhibitor enalapril and the betaadrenergic antagonist metoprolol in essential hypertension.J Hypertens 1984; 2 (Suppl 2):89–92.

    Google Scholar 

  179. Herrera-Acosta J, Perez-Gravas H, Fernandez M, Arriager J. Enalapril in essential hypertension.Drugs 1985; 30 (Suppl 1):35–46.

    PubMed  Google Scholar 

  180. Dupont AG, Vanderniepen P, Bossut AM, Jonckheer MH, Six RO. Effect of enalapril on ambulatory blood pressure, renal hemodynamics and cardiac functions in essential hypertension.Acta Cardiologica 1986;41:353–358.

    PubMed  Google Scholar 

  181. Reams GP, Bauer JH. Long-term effects of enalapril monotherapy and enalapril/hydrochlorothiazide combination therapy on blood pressure, renal function and body fluid composition.J Clin Hypertens 1986;2:55–63.

    PubMed  Google Scholar 

  182. Navis G, deJong PE, Donker AJM, van der Hem GK, de Zeeuw D. Moderate sodium restriction in hypertension subjects: Renal effects of ACE-inhibition.Kidney Int 1987;31:815–819.

    PubMed  Google Scholar 

  183. Bauer JH, Reams GP, Lal SM. Renal protective effect of strict blood pressure control with enalapril therapy.Arch Intern Med 1987;147:1397–1400.

    PubMed  Google Scholar 

  184. Giorgi DMA, Giorgi MCP, de Almeida Burdmann E, Silva HB, Marcondes M. Effects of MK-521 (lisinopril) on the renal plasma flow and renin-angiotensin-aldosterone system in patients with essential hypertension.J Hypertens 1986; 4 (Suppl 5):S420–S422.

    Google Scholar 

  185. Dupont AG, Van der Niepen P, Volchaert A, Ingels M, Bossuyt AM, Jonckheer MH, Six RO. Improved renal function during chronic lisinopril treatment in moderate to severe primary hypertension.J Cardiovasc Pharmacol 1987; 10 (Suppl 7):S148–S150.

    Google Scholar 

  186. Laher MS, Natin D, Rao SK, Jones RW, Carr P. Lisinopril in elderly patients with hypertension.J Cardiovasc Pharmacol 1987; 9 (Suppl 3):S69–S71.

    PubMed  Google Scholar 

  187. Reams GP, Bauer JH. Effect of lisinopril monotherapy on renal hemodynamics.Am J Kidney Dis 1988; 11:499–507.

    PubMed  Google Scholar 

  188. Murphy BF, Whitworth JA, Kincaid-Smith P. Renal insufficiency with combinations of angiotensin converting enzyme inhibitors and diuretics.Br Med J 1984;288:844–845.

    Google Scholar 

  189. Hricik DE, Browning PJ, Kopelman R, Goorno WE, Modias NE, Dzau VJ. Captopril-induced functional renal insufficiency in patients with bilateral renal artery stenosis or renal artery stenosis in a solitary kidney.N Engl J Med 1983;308:373–376.

    PubMed  Google Scholar 

  190. Hollenberg NK. Medical therapy of renovascular hypertension: Efficacy and safety of captopril in 269 patients.Cardiovasc Rev Report 1983;4:852–876.

    Google Scholar 

  191. Curtis JJ, Luke RG, Whelchel JD, Diethelm AG, Jones P, Dustan HP. Inhibition of angiotensin converting enzyme in renal transplant recipients with hypertension.N Engl J Med 1983;308:377–381.

    PubMed  Google Scholar 

  192. Wenting CJ, Tan-Tjiong HL, Derkx FHM, de Bruyn JHB, Man in't Veld AJ. Split renal function after captopril in unilateral renal artery stenosis.Br Med J 1984;288:886–890.

    Google Scholar 

  193. Bender W, LaFrance N, Walker WG. Mechanism of deterioration in renal function in patients with renovascular hypertension treated with enalapril.Hypertension 1984; 6 (Suppl I):I193–I197.

    PubMed  Google Scholar 

  194. Textor SC, Novick AC, Tarazi RC, Klimas V, Vidt DG, Pohl M. Critical perfusion pressure for renal function in patients with bilateral atherosclerotic renal vascular disease.Ann Intern Med 1985;102:308–314.

    PubMed  Google Scholar 

  195. Reams GP, Bauer JH, Gaddy P. Use of the converting enzyme inhibitor enalapril in renovascular hypertension.Hypertension 1986;8:290–297.

    PubMed  Google Scholar 

  196. Miyamori I, Yasuhara S, Takeda Y, Koshida H, Ikeda M, Nagai K, Okamoto H, Morise T, Takeda R, Aburano T. Effects of converting enzyme inhibition on split renal function in renovascular hypertension.Hypertension 1986;8:415–521.

    PubMed  Google Scholar 

  197. Jackson B, McGrath BP, Matthews G, Wong C, Johnston CI. Differential renal function during angiotensin converting enzyme inhibition in renovascular hypertension.Hypertension 1986;8:650–654.

    PubMed  Google Scholar 

  198. Levenson DJ, Dzau VJ. Effects of angiotensin-converting enzyme inhibition on renal hemodynamics in renal artery stenosis.Kidney Internal 1987; 31 (Suppl 20):S173–S179.

    Google Scholar 

  199. Dworkin LD, Grosser M, Feiner HD, Ullian M, Parker M. Renal vascular effects of antihypertensive therapy in uninephrectomized SHR.Kidney Int 1989;35:790–798.

    PubMed  Google Scholar 

  200. Scholey JW, Miller PL, Rennke HG, Meyer TW. Converting enalapril inhibitor treatment reverses broadening of epithelial cell foot processes in rats with reduced nephron number.Kidney Int 1989;35:437A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reams, G.P., Bauer, J.H. Acute and chronic effects of angiotensin converting enzyme inhibitors on the essential hypertensive kidney. Cardiovasc Drug Ther 4, 207–219 (1990). https://doi.org/10.1007/BF01857635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01857635

Key Words

Navigation