Skip to main content
Log in

Tightly-bound divalent cation of actin

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Actin is known to undergo reversible monomer-polymer transitions that coincide with various cell activities such as cell shape changes, locomotion, endocytosis and exocytosis. This dynamic state of actin filament self-assembly and disassembly is thought to be regulated by the properties of the monomeric actin molecule andin vivo by the influence of actin-associated proteins. Of major importance to the properties of the monomeric actin molecule are the presence of one tightly-bound ATP and one tighly-bound divalent cation per molecule.In vivo the divalent cation is thought to be Mg2+ (Mg-actin) butin vitro standard purification procedures result in the preparation of Ca-actin. The affinity of actin for a divalent cation at the tight binding site is in the nanomolar range, much higher than earlier thought. The binding kinetics of Mg2+ and Ca2+ at the high affinity site on actin are considered in terms of a simple competitive binding mechanism. This model adequately describes the published observations regarding divalent cation exchange on actin. The effects of the tightly-bound cation, Mg2+ or Ca2+, on nucleotide binding and exchange on actin, actin ATP hydrolysis activity and nucleation and polymerization of actin are discussed. From the characteristics that are reviewed, it is apparent that the nature of the bound divalent cation has a significant effect on the properties of actin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

I-AEDANS:

N-iodoacetyl-N′-(5-sulpho-1 -naphthyl)ethylenediamine

Quin 2:

2-[(2-bis-[carboxymethyl]amino-5-methylphenoxyl) methyl]-6-methoxy-8-bis[carboxymethyl] aminoquinoline

BAPTA:

1,2-bis(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid

DCF-actin:

N-(-pyrenyl)iodoacetamide

pyrene:

divalent cation-free actin

References

  • Asakura, A. (1961) The interaction between G-actin and ATP.Arch. Biochem. Biophys. 92, 140–49.

    PubMed  Google Scholar 

  • Barany, M., Finkelman, F. &Therattil-Antony T. (1962) Studies on the bound calcium of actin.Arch. Biochem. Biophys. 98, 28–45.

    Google Scholar 

  • Barden, J. A. &Dos Remedios, C. G. (1984) The environment of the high affinity binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy.J. Biochem 91, 913–21.

    Google Scholar 

  • Barden, J. A. &Dos Remedios, C. G. (1987) Fluorescence resonance energy transfer between sites in G-actin.Eur. J. Biochem. 168, 103–9.

    PubMed  Google Scholar 

  • Brauer, M. &Sykes, B. D. (1982) Effects of manganous ions on the phosphorus-31 nuclear magnetic resonance spectrum of adenosine triphosphate bound to nitrated actin.Biochemistry 21, 5934–9.

    PubMed  Google Scholar 

  • Brenner, S. L. &Korn, E. D. (1980) The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization.J. Biol. Chem. 255, 841–4.

    PubMed  Google Scholar 

  • Brenner, S. L. &Korn, E. D. (1981) Stimulation of actin ATPase activity by cytochalasins provide evidence for a new species of monomeric actin.J. Biol. Chem. 256, 8663–70.

    PubMed  Google Scholar 

  • Brenner, S. L., Tobacman S. &Korn E. D. (1983) The kinetics of actin polymerization and monomer-polymer exchange at steady-state. InActin: Structure and Function in Muscle and Non-Muscle Cells (edited by dos Remedios, C. G. & Barden, J.) pp. 97–106. Sydney: Academic Press.

    Google Scholar 

  • Campbell, A. K. (1983)Intracellular Calcium, p. 91. Chichester: John Wiley.

    Google Scholar 

  • Carlier, M-F. (1990) Actin polymerization and ATP hydrolysis.Adv. Biophys. 26, 51–73.

    PubMed  Google Scholar 

  • Carlier, M-F. (1991) Actin: protein structure and filament dynamics.J. Biol. Chem. 266, 1–4.

    PubMed  Google Scholar 

  • Carlier, M-F., Pantaloni, D. &Korn, E. D. (1984) Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state.J. Biol. Chem. 259, 9983–61.

    PubMed  Google Scholar 

  • Carlier, M-F., Pantaloni, D. &Korn, E. D. (1986a) Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin.J. Biol. Chem. 261, 10778–84.

    PubMed  Google Scholar 

  • Carlier M-F., Pantaloni, D. &Korn, E. D. (1986b) The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis.J. Biol. Chem. 261, 10785–92.

    PubMed  Google Scholar 

  • Carlier, M-F., Pantaloni, D. &Korn, E. D. (1987) The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin.J. Biol. Chem. 262, 3052–9.

    PubMed  Google Scholar 

  • Chrambach, A., Barany, M. &Finkelman, F. (1961) The bound calcium of actin.Arch. Biochem. Biophys. 98, 28–45.

    Google Scholar 

  • Cooper, J. A., Buhle, E. J., Walker, S. B., Tsong, T. Y. &Pollard, T. D. (1983) Kinetic evidence for a monomer activation step in actin polymerization.Biochemistry 22, 2193–202.

    PubMed  Google Scholar 

  • Cotton, F. A. &Wilkinson G. (1966)Advanced Inorganic Chemistry, 2nd edn, pp. 163–6. New York: Interscience Publishers.

    Google Scholar 

  • Diebler, H. Eigen, M., Ilgenfritz, G., Maas, G. &Winkler, R. (1969) Kinetics and mechanism of reaction of main group metal ions with biological carriers.Pure Appl. Chem. 20, 93–115.

    Google Scholar 

  • Dos Remedios, C. G., Miki, M. &Barden, J. A. (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation.J. Muscle Res. Cell Motil. 8, 97–117.

    PubMed  Google Scholar 

  • Drabikowski, W. &Strzelecka-Golaszewska H. (1963) The exchange of actin-bound calcium with various bivalent cations.Biochim. Biophys. Acta 71, 486–7.

    Google Scholar 

  • Drenckhahn, D. &Pollard, T. D. (1986) Elongation of actin filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macro molecules.J. Biol. Chem. 261, 12754–8.

    PubMed  Google Scholar 

  • Engel, J., Fasold, H., Hulla, F. W., Waechter, F. &Wegner, A. (1977) The polymerization reaction of muscle actin.Mol. Cell. Biochem. 18, 3–13.

    PubMed  Google Scholar 

  • Estes, J. E., Selden, L. A. &Gershman, L. C. (1987) Tight binding of divalent cations to monomeric actin. Binding kinetics support a simplified model.J. Biol. Chem. 262, 4952–7.

    PubMed  Google Scholar 

  • Feuer, G., Molnar, F., Pettko, E. &Straub, F. B. (1948) Studies on the composition and polymerization of actin.Acta Physiol. 1, 150.

    Google Scholar 

  • Frieden, C. (1982) The Mg-induced conformational change in rabbit skeletal muscle G-actin.J. Biol. Chem. 257, 2882–6.

    PubMed  Google Scholar 

  • Frieden, C., Lieberman, D. &Gilbert, H. R. (1980) A fluorescent probe for conformational changes in skeletal muscle actin.J. Biol. Chem. 255, 8991–3.

    PubMed  Google Scholar 

  • Gershman, L. C., Selden, L. A., Estes, J. E. &Newman, J. (1983) Evidence for a monomer activation step in actin polymerization.Biophys. J. 41, 45a.

    Google Scholar 

  • Gershman, L. C., Newman, J., Selden, L. A. &Estes, J. E. (1984) Bound cation exchange affects the lag phase in actin polymerization.Biochemistry 23, 2199–203.

    PubMed  Google Scholar 

  • Gershman, L. C., Selden, L. A. &Estes, J. E. (1986) High affinity binding of divalent cation to actin is much stronger than previously reported.Biochem. Biophys. Res. Comm. 135, 607–14.

    PubMed  Google Scholar 

  • Gershman, L. C., Estes, J. E. &Selden, L. A. (1988a) Polymerization characteristics of divalent cation-free actin.Ann. N.Y. Acad. Sci. 529, 264–7.

    Google Scholar 

  • Gershman, L. C., Selden, L. A., Kinosian, H. J. &Estes, J. E. (1988b) Divalent cation exchange on actin.Biophys. J. 53, 573a.

    Google Scholar 

  • Gershman, L. C., Selden, L. A., Kinosian, H. J. &Estes, J. E. (1989) Preparation and polymerization properties of monomeric ADP-actin.Biochim. Biophys. Acta 995, 109–15.

    PubMed  Google Scholar 

  • Gershman, L. C., Selden, L. A. &Estes, J. E. (1990) Nucleotide binding to actin is regulated by cation binding at the high affinity site.Tenth International Biophysics Congress, Vancouver, Canada.

  • Gershman, L. C., Selden, L. A., Kinosian, H. J. &Estes, J. E. (1991a) High affinity divalent cation exchange on actin: association rate measurements support the simple competitive model.J. Biol. Chem. 266, 76–82.

    PubMed  Google Scholar 

  • Gershman, L. C., Selden, L. A. &Estes, J. E. (1991b) Cation binding to the high affinity site regulates nucleotide binding to actin.Biophys. J. 59, 53a.

    Google Scholar 

  • Gilbert, H. &Frieden, C. (1983) Preparation, purification and properties of a crosslinked trimer of G-actin.Biochem. Biophys. Res. Comm. 111, 404–8.

    PubMed  Google Scholar 

  • Goddette, D. W., Uberbacher, E. C., Bunick, G. J. &Frieden, C. (1986) Formation of actin dimers as studied by small angle neutron scattering.J. Biol. Chem. 261, 2605–9.

    PubMed  Google Scholar 

  • Gordon, D. J., Yang, Y-Z. &Korn, E. D. (1976) Polymerization ofAcanthamoeba actin.J. Biol. Chem. 251, 7474–9.

    PubMed  Google Scholar 

  • Grubhofer, N. &Weber, H. H. (1961) Uber Actin-Nucleotide und die Funktion und Bindung der Nucleotidphosphate im G- und F-actin. Z.Naturforsch 16b, 435–444.

    Google Scholar 

  • Haiech, J., Derancourt, J., Perchere, J-F. &Demaille, J. (1979) Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function.Biochemistry 18, 2752–8.

    PubMed  Google Scholar 

  • Hambly, B. D., Barden, J. A., Miki, M. &Dos Remedios, C. G. (1986) Structure and functional domains on actin.Bioessays 4, 124–8.

    PubMed  Google Scholar 

  • Hasselbach, W. (1957) Die bindung von Adenosindiphosphate, von Anorganischen Phosphate und von Erdalkalien an die Struckturproteine des Muskels.Biochim. Biophys. Acta 25, 562–74.

    PubMed  Google Scholar 

  • Hegyi, G., Szilagyi, L. &Belagyi, J. (1988) Influence of the bound nucleotide on the molecular dynamics of actin.Eur. J. Biochem. 175, 271–4.

    PubMed  Google Scholar 

  • Higashi, S. &Oosawa, F. (1965) Conformational changes associated with polymerization and nucleotide binding in actin molecules.J. Mol. Biol. 12, 843–65.

    PubMed  Google Scholar 

  • Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. &Holmes, K. C. (1990) Atomic structure of the actin: DNase I complex.Nature 347, 37–44.

    PubMed  Google Scholar 

  • Kasai, M. (1969) Thermodynamical aspect of G-F transformation of actin.Biochim. Biophys. Acta 180, 399–409.

    PubMed  Google Scholar 

  • Kasai, M. &Oosawa, F. (1968) The exchangeability of actin-bound calcium with various divalent cations.Biochim. Biphys. Acta 154, 520–8.

    Google Scholar 

  • Kasai, M. &Oosawa, F. (1969) Behavior of divalent cations and nucleotides bound to F-actin.Biochim. Biophys. Acta 172, 300–10.

    PubMed  Google Scholar 

  • Kasai, M., Asakura S. &Oosawa, F. (1962) The cooperative nature of G-F transformation of actin.Biochim. Biophys. Acta 57, 22–31.

    PubMed  Google Scholar 

  • Kasai, M., Nakano, E. &Oosawa, F. (1965) Polymerization of actin free from nucleotides and divalent cations.Biochim. Biophys. Acta 94, 494–503.

    PubMed  Google Scholar 

  • Keiser, T., Schiller, A. &Wegner, A. (1986) Non-linear increase in elongation rate of actin filaments with actin monomer concentration.Biochemistry 25, 4899–906.

    PubMed  Google Scholar 

  • Kinosian, H. J., Selden, L. A., Estes, J. E. &Gershman, L. C. (1991) Thermodynamics of actin polymerization: influence of the tightly-bound cation.Biochim. Biophys. Acta 1077, 151–8.

    PubMed  Google Scholar 

  • Kitazawa, T., Shuman, H. &Somlyo, A. (1982) Calcium and magnesium binding to thin and thick filaments in skinned muscle fibers: electron probe analysis.J. Muscle Res. Cell Motil. 3, 437–54.

    PubMed  Google Scholar 

  • Konno, K. &Morales, M. F. (1985) Exposure of actin thiols by the removal of tightly held calcium ions.Proc. Natl. Acad. Sci. USA 82, 7904–8.

    PubMed  Google Scholar 

  • Kopp, S. J., Barron, J. T. &Tow, J. P. (1990) Phosphate metabolites, intracellular pH and free [Mg2+] in single, intact carotid artery segments studied by31P-NMR.Biochim. Biophys. Acta 1055, 27–35.

    PubMed  Google Scholar 

  • Korn, E. D., Carlier, M-F. &Pantaloni, D. (1987) Actin polymerization and ATP hydrolysis.Science 238, 638–44.

    PubMed  Google Scholar 

  • Kuehl, W. M. &Gergely, J. (1969) The kinetics of exchange of adenosine triphosphate and calcium with G-actin.J. Biol. Chem. 244, 4720–9.

    PubMed  Google Scholar 

  • Kushmerick, M. J., Dillon, P. F., Meyers, R. A., Brown, T. R., Krisanda, J. M. &Sweeney, H. L. (1986)131P-NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle.J. Biol. Chem. 261, 14420–9.

    PubMed  Google Scholar 

  • Lal, A. A., Brenner, S. L. &Korn, E. D. (1984) Preparation and polymerization of skeletal muscle ADP-actin.J. Biol. Chem. 259, 13061–5.

    PubMed  Google Scholar 

  • Laki, K. &Clark, A. M. (1951) On the nucleotide content of actin preparations.J. Biol. Chem. 191, 599–606.

    PubMed  Google Scholar 

  • Laki, K., Bowen, W. J. &Clark, A. (1950) The polymerization of proteins.J. Gen. Physiol. 33, 437–43.

    PubMed  Google Scholar 

  • Loscalzo, J. &Reed, G. A. (1976) Spectroscopic studies of actinmetal nucleotide complexes.Biochemistry 15, 5407–13.

    PubMed  Google Scholar 

  • Martonosi, A. &Gouvea, M. A. (1961) Studies on actin. IV The interaction of nucleoside triphosphates with actin.J. Biol. Chem. 236, 1345–52.

    PubMed  Google Scholar 

  • Martonosi, A., Gouvea, M. A. &Gergely, J. (1960) Studies on actin. I. The interaction of C14-labelIed adenine nucleotide with actin.J. Biol. Chem. 235, 1700–3.

    PubMed  Google Scholar 

  • Martonosi, A., Molino, C. M. &Gergely, J. (1964) The binding of divalent cations to actin.J. Biol. Chem. 239, 1057–64.

    PubMed  Google Scholar 

  • Maruyama, K. (1981) Effects of trace amounts of Ca2+ and Mg2+ on the polymerization of actin.Biochim. Biophys. Acta 667, 139–42.

    PubMed  Google Scholar 

  • Maruyama, K. &Gergely, J. (1961) Removal of the bound calcium of G-actin by ethylenediaminetetraacetate (EDTA).Biochem. Biophys. Res. Comm. 6, 245–9.

    PubMed  Google Scholar 

  • Maruyama, K. &Martonosi, A. (1961) Protective action of nucleoside triphosphates against the inactivation of G-actin by ethylenediaminetetraacetate.Biochem. Biophys. Res. Comm. 5, 85–7.

    PubMed  Google Scholar 

  • Matsudaira, P., Bordas, J. &Koch, M. H. J. (1987) Synchrotron X-ray diffraction studies of actin structure during polymerization.Proc. Natl. Acad. Sci. (USA) 84, 3151–5.

    Google Scholar 

  • Mejean, C., Hue, H. K., Pons, F., Roustan, C. &Benyamin, Y. (1988) Cation binding sites on actin: a structural relationship between antigenic epitopes and cation exchange.Biochem. Biophys. Res. Comm. 152, 365–75.

    Google Scholar 

  • Mihashi, K. &Ooi, T. (1965) Effects of divalent cations and ethanol on actin. InMolecular Biology of Muscular Contraction (edited by Ebashi, S., Oosawa F., Sekine, T. & Tonomura, Y.) pp. 77–89. Tokyo: Igaku Shoin.

    Google Scholar 

  • Miki, M. &Wahl, P. (1985) Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys 373 residue.Biochim. Biophys. Acta 828, 188–95.

    PubMed  Google Scholar 

  • Millonig, R., Salvo, H. &Aebi, U. (1985) Probing actin polymerization by intermolecular cross-linking.J. Cell. Biol. 106, 785–96.

    Google Scholar 

  • Mockrin, S. C. &Korn, E. D. (1983) Kinetics of polymerization and ATP hydrolysis by covalently crosslinked actin dimer.J. Biol. Chem. 258, 3215–21.

    PubMed  Google Scholar 

  • Moeschler, H. J., Schaer, J-J. &Cox, J. A. (1980) A thermodynamic analysis of the binding of calcium and magnesium ions to parvalbumin.Eur. J. Biochem. 111, 73–8.

    PubMed  Google Scholar 

  • Mommaerts, W. F. H. M. (1951) Reversible polymerization and ultracentrifugal purification of actin.J. Biol. Chem. 188, 559–65.

    PubMed  Google Scholar 

  • Mommaerts, W. F. H. M. (1952) The molecular transformations of actin. I. Globular actin.J. Biol. Chem. 198, 445–57.

    PubMed  Google Scholar 

  • Mozo-Villarias, A. &Ware, B. R. (1985) Actin oligomers below the critical concentration detected by fluorescence photobleaching recovery.Biochemistry 24, 1544–8.

    Google Scholar 

  • Neidl, C. &Engel, J. (1979) Exchange of ADP, ATP and 1:N6-ethenoadenosine-5′-triphosphate at G-actin.Eur. J. Biochem. 101, 163–9.

    PubMed  Google Scholar 

  • Newman, J., Estes, J. E., Selden, L. A. &Gershman, L. C. (1985) Presence of oligomers at subcritical actin concentrations.Biochemistry 24, 1538–44.

    Google Scholar 

  • Nowak, E., Strzelecka-Golaszewska, H. &Goody, R. (1988) Kinetics of nucleotide and metal ion interaction with G-actin.Biochemistry 27, 1785–92.

    PubMed  Google Scholar 

  • Oosawa, F. (1983) Macromolecular assembly of actin. InMuscle and Non-Muscle Motility (edited by Stracher, A.) pp. 151–216. New York: Academic Press.

    Google Scholar 

  • Oosawa, F. &Asakura, S. (1975)Thermodynamics of the Polymerization of Protein. New York: Academic Press.

    Google Scholar 

  • Oosawa, F., Asakura, S., Asai, H., Kasai, M., Kobayashi, S., Mihashi, K., Ooi, T., Tanaguchi, M. &Nakano, E. (1964) Structure and function of actin polymers. InBiochemistry of Muscle Contraction (edited by Gergely, J.) pp. 158–72. Boston: Little, Brown.

    Google Scholar 

  • Pantaloni, D., Carlier, M-F. &Korn, E. D. (1985a) The interaction between ATP-actin and ADP-actin.J. Biol. Chem. 266, 6572–8.

    Google Scholar 

  • Pantaloni, D., Hill, T. L., Carlier, M-F. &Korn, E. D. (1985b) A model for actin polymerization and the kinetic effects of ATP hydrolysis.Proc. Natl. Acad. Sci 82, 7207–11.

    PubMed  Google Scholar 

  • Pardee, J. D. &Spudich, J. A. (1982) Mechanism of K+-induced actin assembly.J. Cell Biol. 98, 648–54.

    Google Scholar 

  • Pollard, T. D. (1986) Rate constant for the reactions of ATP-and ADP-actin with the ends of actin filaments.J. Cell Biol. 103, 2747–54.

    PubMed  Google Scholar 

  • Pollard, T. D. (1990) Actin.Curr. Opin. Cell Biol. 2, 33–40.

    PubMed  Google Scholar 

  • Pollard, T. D. &Weeds, A. G. (1984) The rate constant for ATP hydrolysis by polymerized actin.FEBS Lett. 190, 94–8.

    Google Scholar 

  • Pollard, T. D., Aebi, U., Cooper, J. A., Fowler, W. E., Kiehart, D. P., Smith, P. R. &Tseng, P. C. (1982) Actin and myosin function inAcanthamoeba.Phil. Trans. R. Soc, London Series B 299, 237–45.

    Google Scholar 

  • Polzar, B., Nowak, E., Goody, R. S. &Mannherz, H. G. (1989) The complex of actin and deoxyribonuclease I as a model system to study the interactions of nucleotides, cations and cytochalasin D with monomeric actin.Eur. J. Biochem. 182, 267–75.

    PubMed  Google Scholar 

  • Potter, J. D. &Johnson, J. D. (1982) Troponin. InCalcium and Cell Function (edited by Cheung, W. Y.) Vol II, pp. 145–73. New York: Academic Press.

    Google Scholar 

  • Roustan, C., Benyamin, Y., Boyer, M., Bertrand, M., Audemard, E. &Jauregui-Adell, J. (1985) Conformational changes induced by Mg2+ on actin monomers.FEBS Lett. 181, 119–23.

    PubMed  Google Scholar 

  • Selden, L. A., Estes, J. E. &Gershman, L. C. (1983) The tightly bound divalent cation regulates actin polymerization.Biochem. Biophys. Res. Comm. 116, 478–85.

    PubMed  Google Scholar 

  • Selden, L. A., Gershman, L. C. &Estes, J. E. (1986) Kinetic comparison between Mg-actin and Ca-actin.J. Muscle Res. Cell Motil. 7, 215–24.

    PubMed  Google Scholar 

  • Selden, L. A., Gershman, L. C., Kinosian, H. J. &Estes, J. E. (1987) Conversion of ATP-actin to ADP-actin reverses the affinity of monomeric actin for Ca2+ vs. Mg2+.FEBS Lett. 217, 89–93.

    PubMed  Google Scholar 

  • Selden, L. A. Estes, J. E. &Gershman, L. C. (1989) High affinity divalent cation binding to actin.J. Biol. Chem. 264, 9271–7.

    PubMed  Google Scholar 

  • Selden, L. A., Gershman, L. C., Kinosian, H. J. &Estes, J. E. (1990) Mg++ bound at the high affinity site on actin is a cofactor for actin ATPase activity.Biophys. J. 57, 325a.

    Google Scholar 

  • Selden, L. A., Kinosian, H. J., Gershman, L. C. &Estes, J. E. (1991) Cytochalasin D activation of Mg-ATP-actin ATPase activity.Biophys. J. 59, 53a.

    Google Scholar 

  • Straub, F. B. &Feuer, G. (1950) Adenosinetriphosphate functional group of actin.Biochim. Biophys. Acta 4, 455–70.

    Google Scholar 

  • Strohman, R. C. &Samorodin, A. J. (1962) The requirements for adenosine triphosphate binding to globular actin.J. Biol. Chem. 237, 363–9.

    PubMed  Google Scholar 

  • Strzelecka-Golaszewska, H. (1973) Relative affinities of divalent cations to the site of the tight calcium binding in G-actin.Biochim. Biophys. Acta 370, 60–9.

    Google Scholar 

  • Strzelecka-Golaszewska, H. &Drabikowski, W. (1968) Studies on the exchange of G-actin-bound calcium with bivalent cations.Biochim. Biophys. Acta 162, 518–95.

    PubMed  Google Scholar 

  • Strzelecka-Golaszewska, H. &Drabikowski, W. (1978) Interaction of actin with divalent cations. 2. Characterization of protein-metal complexes.Eur. J. Biochem. 88, 229–37.

    PubMed  Google Scholar 

  • Szent-Gyorgyi, A. (1951)Chemistry of Muscle Contraction, 2nd edn. New York: Academic Press.

    Google Scholar 

  • Tobacman, L. S. &Korn, E. D. (1983) The kinetics of actin nucleation and polymerization.J. Biol. Chem. 258, 3207–14.

    PubMed  Google Scholar 

  • Tonomura, Y. &Yoshimura, J. (1961) Removal of bound nucleotide and calcium of G-actin by treatment with ethylenediamine-tetraacetic acid.J. Biochem. (Tokyo) 50, 79–80.

    Google Scholar 

  • Valentin-Ranc., C. &Carlier, M-F. (1989) Evidence for the direct interaction between tightly bound metal ion and ATP on actin.J. Biol. Chem. 264, 20871–80.

    PubMed  Google Scholar 

  • Waechter, F. &Engel, J. (1975) The kinetics of the exchange of G-actin-bound 1:N6-ethenoadenosine 5-triphosphate with ATP as followed by fluorescence.Eur. J. Biochem. 57, 543–59.

    Google Scholar 

  • Waechter, F. &Engel, J. (1977) Association kinetics and binding constants of nucleotide triphosphates with G-actin.Eur. J. Biochem. 74, 227–32.

    PubMed  Google Scholar 

  • Weber, A., Herz, R. &Reiss, I. (1969) The role of magnesium in the relaxation of myofibrils.Biochemistry 8, 2266–71.

    PubMed  Google Scholar 

  • Wegner, A. &Engel J. (1975) Kinetics of the cooperative association of actin to actin filaments.Biophys. Chem. 3, 215–25.

    PubMed  Google Scholar 

  • Zimmerle, C. T., Patane, K. &Frieden, C. (1987) Divalent cation binding to the high- and low-affinity sites on G-actin.Biochemistry 26, 6545–52.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estes, J.E., Selden, L.A., Kinosian, H.J. et al. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil 13, 272–284 (1992). https://doi.org/10.1007/BF01766455

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01766455

Keywords

Navigation