Skip to main content
Log in

Contractile properties and ultrastructure of three types of muscle fibre in the dogfish myotome

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Three main types of fibre can be differentiated in the adult dogfish myotome at the immediate post-anal level. An outer band of muscle consists of 80–90 pale multiply innervated fibres (superficial fibres). These fibres are 80–90 μm in diameter, lack M-lines and have a low Ca2+-activated myosin ATPase activity. Volume densities of myofibrils (Vv(my,f)) and mitochondria (Vv(mt,f)) are respectively 76 and 9.5%. Beneath this layer are around 8000 red multiply innervated fibres. These have an average diameter of 25–40 μm. Vv(my,f) and Vv(mt,f) are 62 and 21% respectively, and M-lines are present. Around 11000 white focally innervated twitch fibres lie beneath the red fibre zone. White fibres with an average diameter of 80–120 μm have a high Ca2+-activated myosin ATPase activity and Vv(my,f) and Vv(mt,f) are 78 and 5% respectively.

Contractile properties of single skinned fibres were determined at 12° C. Maximum Ca2+ activated tensions (kN m−2) and unloaded contraction speeds (muscle lengths s−1) were 49 and 0.5 for superficial, 70 and 1.4 for red and 180 and 4.4 for white muscle fibres.

Superficial fibres have not been reported in other elasmobranchs with the exception of the closely related nursehound (Scyliorhinus stellaris L.) It is suggested that they are specialized for sustained force generation, having a tonic (postural) rather than a locomotor role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akster, H. A. (1981) Ultrastructure of muscle fibres in head and axial muscles of the perch. A quantitative study.Cell Tiss. Res. 219, 111–31.

    Google Scholar 

  • Atringham, J. D. &Johnston, I. A. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles.J. Physiol., Lond. 333, 421–49.

  • Bone, Q. (1966) On the function of the two types of myotomal muscle fibres in elasmobranch fish.J. mar. biol. Ass. U.K. 46, 321–49.

    Google Scholar 

  • Bone, Q. (1978) Locomotor muscle. InFish Physiology, Vol. VII (edited byHoar, W. S. andRandall, D. J.), pp. 361–424. New York, San Francisco, London: Academic Press.

    Google Scholar 

  • Bone, Q. &Chubb, A. D. (1978) The histochemical demonstration of myofibrillar ATPase on elasmobranch muscle.Histochem. J. 10, 489–94.

    Google Scholar 

  • Canfield, S. P. (1971) The mechanical properties and heat production of chicken latissimus dorsi muscles during tetanic contractions.J. Physiol., Lond. 219, 218–302.

    Google Scholar 

  • Edman, K. A. P. (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres.J. Physiol., Lond. 291, 143–50.

    Google Scholar 

  • Fabiato, A. &Fabiato, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells.J. Physiol., Paris 75, 463–505.

    Google Scholar 

  • Ferenczi, M. A., Goldman, Y. E. &Simmons, R. M. (1984) The dependence of force and shortening on substrate concentration in skinned fibres fromRana temporaria.J. Physiol., Lond. 350, 519–44.

    Google Scholar 

  • Flitney, F. W. (1971) The volume of the T-system and its association with the sarcoplasmic reticulum in slow muscle fibres of the frog.J. Physiol., Lond. 217, 243–57.

    Google Scholar 

  • Gordon, M. S. (1968) Oxygen consumption of red and white muscles from tuna fishes.Science, N.Y. 159, 87–90.

    Google Scholar 

  • Guthe, K. F. (1981) Reptilian muscle: fine structure and physiological parameters. InBiology of the Reptilia, (edited byGans, G.), Vol. II, pp. 265–353. New York: Academic Press.

    Google Scholar 

  • Hamoir, G. &Konosu, S. (1965) Carp myogens of white and red muscles.Biochem. J. 96, 85–97.

    PubMed  Google Scholar 

  • Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle.Proc. R. Soc. Ser. B 126, 136–95.

    Google Scholar 

  • Johnston, I. A. (1981) Structure and function of fish muscles. InVertebrate Locomotion (edited byDay, M.H.) Symposium of the Zoological Society of London48, 71–113. London: Academic Press.

    Google Scholar 

  • Johnston, I. A. (1983) Dynamic properties of fish muscle. InFish Biomechanics (edited byWebb, P. andWeihs, D.), pp. 36–67. New York: Praeger Press.

    Google Scholar 

  • Johnston, I. A. &Sidell, B. D. (1984) Differences in temperature dependence of muscle contractile properties and myofibrillar ATPase activity in a coldtemperate fish.J. exp. Biol. 111, 179–89.

    PubMed  Google Scholar 

  • Kilarski, W. &Kozlowska, M. (1983) Ultrastructural characteristics of the teleostean muscle fibres and their nerve endings. The stickleback (Gasterosteus aculeatus L.)Z. mikrosk.-anat. Forsch. 97, 1022–36.

    PubMed  Google Scholar 

  • Kuffler, S. W. &Vaughan Williams, E. M. (1953) Properties of the ‘slow’ skeletal muscle fibres of the frog.J. Physiol., Lond. 121, 318–40.

    Google Scholar 

  • Lännergren, J. (1978) The force-velocity relation of isolated twitch and slow muscle fibres ofXenopus laevis.J. Physiol., Lond. 283, 501–21.

    Google Scholar 

  • Lännergren, J. &Smith, R. S. (1966) Types of muscle fibres in toad skeletal muscle.Acta physiol. scand. 68, 263–74.

    Google Scholar 

  • Moore, G., Johnston, I. A. &Goldspink, G. (1983) The pCa-tension characteristics of single skinned fibres isolated from the anterior and posterior latissimus dorsi muscles of the chicken.J. exp. Biol. 105, 411–6.

    PubMed  Google Scholar 

  • Ovalle, W. K. Jr. (1982) Ultrastructural duality of extrafusal fibres in a slow (tonic) skeletal muscle.Cell Tiss. Res. 222, 261–7.

    Google Scholar 

  • Page, S. G. (1965) A comparison of the fine structure of frog slow and twitch muscle fibres.J. Cell Biol. 26, 477–97.

    PubMed  Google Scholar 

  • Pearse, A. G. E. (1972)Histochemistry, Theoretical and Applied. Vol. 2, 3rd edn. Edinburgh, London: Churchill Livingstone.

    Google Scholar 

  • Rall, J. A. &Schottelius, B. A. (1973) Energetics of contraction in phasic and tonic skeletal muscle fibres of the chicken.J. gen. Physiol. 62, 303–23.

    PubMed  Google Scholar 

  • Ridge, R. M. A. P. (1971) Different types of extrafusal muscle fibres in snake costocutaneous muscles.J. Physiol., Lond. 217, 393–418.

    Google Scholar 

  • Smith, R. S. &Ovalle, W. K. (1973) Varieties of fast and slow extrafusal amphibian hind limb muscles.J. Anat. 116, 1–24.

    PubMed  Google Scholar 

  • Spurway, N. C. (1984) Quantitative histochemistry of frog skeletal muscles.J. Physiol., Lond. 346, 62P.

    Google Scholar 

  • Stanfield, P. R. (1972) Electrical properties of white and red muscle fibres of the elasmobranch fishScyliorhinus canicula.J. Physiol., Lond. 222, 161–86.

    Google Scholar 

  • Thiery, G. &Rambourg, A. (1976) A new staining technique for studying thick sections in the electron microscope.J. Microsc. Biol. Cell. 26, 103–6.

    Google Scholar 

  • Winkelman, R. K. &Schmitt, R. W. (1957) A simple silver method for nerve axoplasm.Proc. Staff Meeting, Mayo Clinic 32, 217–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bone, Q., Johnston, I.A., Pulsford, A. et al. Contractile properties and ultrastructure of three types of muscle fibre in the dogfish myotome. J Muscle Res Cell Motil 7, 47–56 (1986). https://doi.org/10.1007/BF01756201

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01756201

Keywords