Skip to main content
Log in

Oxidation states of peroxidase

  • General and Review Articles
  • a. invited review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Five oxidation states of horseradish peroxidase, ferrous, ferric, Compounds I and II, oxy-ferrous, are known. Various reactions and plausible structures of these states are reported. Mechanisms of peroxidase-oxidase reactions are discussed in terms of the five oxidation states of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Latimer, Oxidation Potentials, Second Edition. Prentice-Hall, Inc., Englewood Cliffs, 1952.

    Google Scholar 

  2. I. Yamazaki, R. Nakajima, K. Miyoshi, R. Makino and M. Tamura, Oxidases and Related Redox Systems (T. E. King, H. S. Mason and M. Morrison, eds.), University park press, in press, (1973).

  3. L. M. Shannon, E. Kay and J. Y. Lew. J. Biol. Chem., 241, 2166 (1966).

    Google Scholar 

  4. K. G. Paul, Acta Chem. Scand., 12, 1312 (1958).

    Google Scholar 

  5. Y. Sawada, T. Ohyama and I. Yamazaki, Biochim. Biophys. Acta, 268, 305 (1972).

    Google Scholar 

  6. Y. Saito and M. Mochizuki, Proc. Intern. Conf. Med. Electron. Biol. Eng., p. 600, Tokyo (1965).

  7. T. Nakamura, J. Japan. Biochem. Soc., 39, 855 (1967).

    Google Scholar 

  8. H. Theorell, Enzymologia, 10, 250 (1942).

    Google Scholar 

  9. H. Theorell, Arkiv Kemi Mineral. Geol., A 16, No 3 (1942).

    Google Scholar 

  10. P. George, Nature, 169, 612 (1952).

    Google Scholar 

  11. P. George, Biochem. J., 54, 267 (1953).

    Google Scholar 

  12. B. Chance, Arch. Biochem. Biophys., 41, 416 (1952).

    Google Scholar 

  13. I. Yamazaki, H. S. Mason and L. H. Piette, J. Biol. Chem., 235, 2444 (1960).

    Google Scholar 

  14. I. Yamazaki and L. H. Piette, Biochim. Biophys. Acta, 50, 62 (1961).

    Google Scholar 

  15. F. Björkstén, Biochim. Biophys. Acta, 212, 396 (1970).

    Google Scholar 

  16. R. Roman and H. B. Dunford, Biochemistry, 11, 2076 (1972).

    Google Scholar 

  17. K. Miyoshi and I. Yamazaki, Enzyme Communications, in press.

  18. I. Yamazaki, Advan. in Biophys. (Tokyo), 2, 33 (1971).

    Google Scholar 

  19. B. Swedin and H. Theorell, Nature, 145, 71 (1940).

    Google Scholar 

  20. B. Chance, J. Biol. Chem. 197, 577 (1952).

    Google Scholar 

  21. R. H. Kenten, Biochem. J., 59, 110 (1955).

    Google Scholar 

  22. I. Yamazaki, K. Fujinaga, I. Takehara and H. Takahashi, J. Biochem., 43, 377 (1956).

    Google Scholar 

  23. T. Akazawa and E. E. Conn, J. Biol. Chem., 232, 403 (1958).

    Google Scholar 

  24. M. H. Klapper and D. P. Hackett, J. Biol. Chem., 238, 3736 (1963).

    Google Scholar 

  25. I. Yamazaki, Proc. Intern. Symp. on Enzyme Chem., Tokyo and Kyoto (1957), p. 224. Maruzen, Tokyo (1958).

    Google Scholar 

  26. I. Yamazaki and L. H. Piette, Biochim. Biophys. Acta, 77, 47 (1963).

    Google Scholar 

  27. T. Odajima, Biochim. Biophys. Acta, 235, 52 (1971).

    Google Scholar 

  28. H. Yamazaki and I. Yamazaki, Arch. Biochem. Biophys. 154, 147 (1973).

    Google Scholar 

  29. J. M. McCord and I. Fridovich, J. Biol. Chem., 244, 6049 (1969).

    Google Scholar 

  30. G. Rotilis, R. C. Bray and M. Fielden, Biochim. Biophys. Acta, 268, 605 (1972).

    Google Scholar 

  31. Y. Sawada and I. Yamazaki, to be published.

  32. T. Odajima and I. Yamazaki, Biochim. Biophys. Acta, 284, 355 (1972).

    Google Scholar 

  33. R. W. Miller and E. V. Parpus, Arch. Biochem. Biophys. 143, 276 (1971).

    Google Scholar 

  34. G. A. Maclachlan and E. R. Waygood, Can. J. Biochem. Physiol., 34, 1233 (1956).

    Google Scholar 

  35. I. Yamazaki and H. Souzu, Arch. Biochem. Biophys. 86, 294 (1960).

    Google Scholar 

  36. P. M. Ray, Arch. Biochem. Biophys. 87, 10 (1960).

    Google Scholar 

  37. R. M. Ray, Arch. Biochem. Biophys. 96, 199 (1962).

    Google Scholar 

  38. R. L. Himan and L. Lang, Biochemistry 4, 144 (1965).

    Google Scholar 

  39. L. R. Fox, W. K. Purves and H. I. Nakada, Biochemistry 4, 2754 (1965).

    Google Scholar 

  40. J. Ricard and J. Nari, Biochim. Biophys. Acta, 113, 57 (1966).

    Google Scholar 

  41. J. Ricard and J. Nari, Biochim. Biophys. Acta, 132, 321 (1967).

    Google Scholar 

  42. P. M. Ray and K. V. Thimann, Arch. Biochem. Biophys. 64, 175 (1956).

    Google Scholar 

  43. Y. Morita, K. Kameda and M. Mizuno, Agr. Biol. Chem. (Tokyo), 26, 442 (1962).

    Google Scholar 

  44. Y. Morita, Y. Kominato and K. Shimizu, Mem. Res. Inst. Food Sci. Kyoto Univ., 28, 1 (1967).

    Google Scholar 

  45. H. A. Harbury, J. Biol. Chem., 225, 1009 (1957).

    Google Scholar 

  46. H. Theorell, Adv. Enzymol. 7, 265 (1947).

    Google Scholar 

  47. R. Lemberg and J. W. Legge, Hematin Compounds and Bile Pigments, p. 348 Interscience Publishers Inc., New York (1949).

    Google Scholar 

  48. H. S. Mason, Avd. Enzymol., 19, 79 (1957).

    Google Scholar 

  49. H. S. Mason, Proc. Intern. Symp. Enzyme Chem., Tokyo and Kyoto (1957), p. 220, Maruzen, Tokyo (1958).

    Google Scholar 

  50. M. H. Klapper and D. P. Hackett, J. Biol. Chem., 238, 3743 (1963).

    Google Scholar 

  51. K. Yokota and I. Yamazaki, Biochim. Biophys. Acta, 105, 301 (1965).

    Google Scholar 

  52. M. Shin, K. Tagawa and D. I. Arnon, Biochem. Z., 338, 84 (1963).

    Google Scholar 

  53. H. Lundegårdh, Nature, 181, 28 (1958).

    Google Scholar 

  54. H. Theorell, Arkiv kemi Mineral. Geol., 14 B, No 20 (1940).

    Google Scholar 

  55. I. Yamazaki, R. Nakajima, H. Honma and M. Tamura, Biochem. Biophys. Res. Commun., 27, 53 (1967).

    Google Scholar 

  56. Y. Morita and K. Kameda, Mem. Res. Inst. Food Sci., Kyoto Univ., 12, 1 (1957).

    Google Scholar 

  57. R. Nakajima and I. Yamazaki, unpublished observation.

  58. B. Hagihara, K. Tagawa, I. Morikawa, M. Shin and K. Okunuki, Nature, 181, 1656 (1958).

    Google Scholar 

  59. Y. Morita, Mem. Res. Inst. Food Sci., Kyoto Univ., 11, 38 (1956).

    Google Scholar 

  60. R. Nakajima, H. Sano and I. Yamazaki, Biochim. Biophys. Acta, 172, 578 (1969).

    Google Scholar 

  61. D. Keilin and T. Mann, Proc. Roy. Soc. London, Series B, 122, 119 (1937).

    Google Scholar 

  62. P. George, J. Biol. Chem., 201, 427 (1953).

    Google Scholar 

  63. I. Yamazaki, K. Yokota and R. Nakajima, Oxidases Related Redox Systems (T. E. King, H. S. Mason and M. Morrison, eds.) p. 485. John Wiley, New York, (1965).

    Google Scholar 

  64. B. Chance, Oxidases and Related Redox Systems (T. E. King, H. S. Mason and M. Morrison, eds.) p. 504. John Wiley, New York (1965).

    Google Scholar 

  65. I. Yamazaki and K. Yokota, Biochem. Biophys. Res. Commun., 19, 249 (1965).

    Google Scholar 

  66. I. Yamazaki, K. Yokota and M. Tamura, Hemes and Hemoproteins (B. Chance, R. E. Estabrook, T. Yonetani, eds.) p. 319. Academic Press, New York, (1966).

    Google Scholar 

  67. J. B. Wittenberg, R. W. Noble, B. A. Wittenberg, E. Antonini, M. Brunori and J. Wyman, J. Biol. Chem., 242, 626 (1967).

    Google Scholar 

  68. I. Yamazaki, H. Yamazaki, M. Tamura, T. Ohnishi, S. Nakamura and T. Iyanagi, Advances in Chemistry Series, 77-III, 290 (1968).

    Google Scholar 

  69. M. Tamura and I. Yamazaki, J. Biochem., 71, 311 (1972).

    Google Scholar 

  70. K. Yokota and I. Yamazaki, Biochem. Biophys. Res. Commun., 18, 48 (1965).

    Google Scholar 

  71. S. Nakamura and I. Yamazaki, Biochim. Biophys. Acta, 189, 29 (1969).

    Google Scholar 

  72. R. Lemberg, Reviews of Pure and Applied Chemistry, 6, 1 (1956).

    Google Scholar 

  73. I. Yamazaki, H. Sano, R. Nakajima and K. Yokota, Biochem. Biophys. Res. Commun., 31, 932 (1968).

    Google Scholar 

  74. B. Chance, Arch. Biochem., 21, 416 (1949).

    Google Scholar 

  75. H. Yamazaki, S. Ohishi and I. Yamazaki, Arch. Biochem. Biophys., 136, 41 (1970).

    Google Scholar 

  76. I. Yamazaki and K. Yokota, Biochim. Biophys. Acta, 132, 310 (1967).

    Google Scholar 

  77. E. J. Land and A. J. Swallow, Biochim. Biophys. Acta, 234, 34 (1971).

    Google Scholar 

  78. K. Yokota and I. Yamazaki, to be published.

  79. H. Degn, Biochim. Biophys. Acta, 180, 271 (1969).

    Google Scholar 

  80. H. Degn, Biochim. Biophys. Acta, 180, 291 (1969).

    Google Scholar 

  81. A. Lotka, J. Phys. Chem., 14, 271 (1910).

    Google Scholar 

  82. P. Nicholls, J. Gen. Physiol., 49, 131 (1965).

    Google Scholar 

  83. A. F. W. Coulson and T. Yonetani, Biochem. Biophys. Res. Commun., 49, 391 (1972).

    Google Scholar 

  84. R. Makino and I. Yamazaki, J. Biochem., 72, 655 (1972).

    Google Scholar 

  85. R. Makino and I. Yamazaki, Arch. Biochem. Biophys., in press.

  86. M. Tamura, T. Asakura and T. Yonetani, Biochim. Biophys. Acta, 268, 292 (1972).

    Google Scholar 

  87. A. S. Brill and R. J. P. Williams, Biochem. J., 78, 246 (1961).

    Google Scholar 

  88. J. Peisach, W. E. Blumberg, B. A. Wittenberg and J. B. Wittenberg, J. Biol. Chem., 243, 1871 (1968).

    Google Scholar 

  89. Y. Maeda and Y. Morita, Biochem. Biophys. Res. Commun., 29, 680 (1967).

    Google Scholar 

  90. T. H. Moss, A. Ehrenberg and A. J. Bearden, Biochemistry, 8, 4159 (1969).

    Google Scholar 

  91. D. Dolphin, A. Forman, D. C. Borg, J. Fajer and R. H. Felton, Proc. Nat. Acad. Sci., 68, 614 (1971).

    Google Scholar 

  92. G. R. Schonbaum and S. Lo, J. Biol. Chem., 247, 3353 (1972).

    Google Scholar 

  93. H. Theorell and A. Ehrenberg, Arch. Biochem. Biophys., 41, 442 (1952).

    Google Scholar 

  94. P. George, Arch. Biochem. Biophys., 45, 21 (1953).

    Google Scholar 

  95. P. George, J. Biol. Chem., 201, 413 (1953).

    Google Scholar 

  96. R. R. Fergusson, J. Am. Chem. Soc., 78, 741 (1956).

    Google Scholar 

  97. T. Yonetani, H. Schleyer and A. Ehrenberg, J. Biol. Chem., 241, 3240 (1966).

    Google Scholar 

  98. J. Peisach, private communication.

  99. P. George and D. H. Irvine, Biochem. J., 52, 511 (1952).

    Google Scholar 

  100. N. K. King and M. E. Winfield, J. Biol. Chem., 238, 1520 (1963).

    Google Scholar 

  101. T. Yonetani and H. Schleyer, J. Biol. Chem., 242, 1974 (1967).

    Google Scholar 

  102. A. F. W. Coulson, J. E. Erman and T. Yonetani, J. Biol. Chem., 246. 917 (1971).

    Google Scholar 

  103. R. W. Noble and Q. H. Gibson, J. Biol. Chem., 245, 2409 (1970).

    Google Scholar 

  104. B. Chance and J. Higgins, Arch. Biochem., 22, 224 (1949).

    Google Scholar 

  105. B. Chance and R. R. Fergusson, The Mechanism of Enzyme Action (W. D. McElroy and B. Glass, eds.), p. 389, Johns Hopkins Univ. Press, Baltimore (1954).

    Google Scholar 

  106. M. J. Comier and P. M. Pricard, J. Biol. Chem., 243, 4706 (1968).

    Google Scholar 

  107. B. B. Hashinoff and H. B. Dunford, Biochemistry 9, 4930 (1970).

    Google Scholar 

  108. R. Roman, H. B. Dunford and M. Evett, Can. J. Chem., 49, 3059 (1971).

    Google Scholar 

  109. B. Chance, Adv. Enzymol., 12, 153 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

an invited article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, I., Yokota, Kn. Oxidation states of peroxidase. Mol Cell Biochem 2, 39–52 (1973). https://doi.org/10.1007/BF01738677

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738677

Keywords