Skip to main content
Log in

Climatic adaptability of populations ofDiplotaxis erucoides D.C. (Brassicaceae) from Sicily, based on leaf morphology, leaf anatomy and δ13 C studies

  • Original Articles
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The morphological and anatomical variability ofDiplotaxis erucoides populations from Sicily was investigated. Populations growing during the summer months exhibit distinct xeromorphic features. Leaf area is strongly reduced and leaf thickness is increased when compared with winter populations. Cell size, as well as cell arrangement and mesophyll cell surface area differ significantly between summer and winter populations. Leaf thickness is almost three times higher in summer populations andA (cell)/A, i.e. the mesophyll cell surface area per unit leaf area changes from about 16 for winter populations to almost 52 for summer populations. These differences are partly due to differences in intercellular volume and partly due to alterations in mesophyll cell sizes. The organic materal of the summer populations exhibits δ13C values in the order of −27%. to −28%., while the corresponding values for the winter populations are in the order of −31%. to −33%.. Analysis ofD. erucoides populations from the transition period revealed intermediate δ13C values. Anatomical variations such as reductions or increases ofA (cells)/A and changes of intercellular volume correlate with the corresponding δ13C data. The δ13C data are discussed in conjunction with the differences in leaf anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulrahman FS, Williams GJ (1981) Temperature and salinity regulation of growth and gas exchange ofSalicornia fruticosa (L.) Oecologia 48:346–352

    Google Scholar 

  • Baker H-G (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    Google Scholar 

  • Bernhardt K-G (1986) Die Begleitvegetation der Weinkulturen in Westsizilien unter besonderer Berücksichtigung der jahreszeitlichen und durch Bearbeitungsmaßnahmen bedingten Veränderungen. Phytocoenologia 14:417–438

    Google Scholar 

  • Bernhardt K-G (1987) Untersuchungen zur Biologie mediterraner Unkränter im westlichen Sizilien. Diss Bot Bd 103

  • Christeller JT, Laing WA, Troughton JH (1976) Isotope discrimination by ribulose 1,5-diphosphate carboxylase. Plant Physiol 57:580–582

    Google Scholar 

  • Craig H (1954) Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in Nature. J Geol 62:115–149

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Google Scholar 

  • Crowdy SH, Tanton TW (1970) Water pathways in higher plants. I. Free space in wheat leaves. J Exp Bot 21:102–111

    Google Scholar 

  • El-Sharkawy M, Hesketh J (1965) Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. J Crop Sci 5:517–521

    Google Scholar 

  • Estep MF, Tabita ER, Parker PL, van Baalen Ch (1978) Carbon isotope fractionation by ribulose-1,5-bisphosphate carboxylase from various organisms. Plant Physiol 61:680–687

    Google Scholar 

  • Fahn A (1964) Some anatomical adaptations of desert plants. Phytomorphology 14:93–102

    Google Scholar 

  • Fahn A (1982) Plant anatomy. 3rd edn. Pergamon Press, Oxford New York

    Google Scholar 

  • Farquhar GD, Ball MC, von Caemmerer S, Roksandic Z (1982a) Effect of salinity and humidity of13C value of halophytes-evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions. Oecologia 52:121–124

    Google Scholar 

  • Farquhar GD, O'Leary MH, Berry JA (1982b) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Google Scholar 

  • Fraser PJB, Francey RJ, Pearman GI (1978) Stable carbon isotopes in tree rings as climatic indicators. DSIR Bull 220:67–73

    Google Scholar 

  • Galimov EM (1966) Carbon isotopes of soil CO2. Geochem Int 3:889–897

    Google Scholar 

  • Givinsh T (1979) On the adaptive significance of leaf form. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant population biology. Columbia University Press, New York, pp 374–407

    Google Scholar 

  • Guy RD, Reid DM, Krouse HR (1980) Shifts in carbon isotope ratios of two halophytes under natural and artificial conditions. Oecologia 44:241–247

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Google Scholar 

  • Keeling Ch (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334

    Google Scholar 

  • Keeling Ch (1960) The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12:200–203

    Google Scholar 

  • Keeling Ch (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24:277–298

    Google Scholar 

  • Keeling Ch, Bacastow RB, Tans PP (1980) Predicted shift in the13C/12C ratio of atmospheric carbon dioxide. Geophys Res Lett 7:505–508

    Google Scholar 

  • Kummerow J (1973) Comparative anatomy of skelerophylls of Mediterranean climate areas. Ecol Studies 7:157–168

    Google Scholar 

  • Leavitt SW, Long A (1982) Evidence for13C/12C fractionation between tree leaves and wood. Nature 298:742–743

    Google Scholar 

  • Libby LM (1973) Multiple thermometry in paleoclimate and historic climate. J Geophys Res 77:4310–4311

    Google Scholar 

  • Libby LM, Pandolfi LJ (1974) Temperature dependence of isotope ratios in tree rings. Proc Natl Acad Sci 71:2482–2486

    Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy. Plant Physiol 63:700–703

    Google Scholar 

  • Lübbert G (1951) Vergleichende cytologische, morphologische und physiologische Untersuchungen innerhalb der Gattung Diplotaxis. Beitr Biol Pflanzen 28:254–295

    Google Scholar 

  • Maximow NA (1931) The physiological significance of the xerophytic structure of plants. J Ecol 19:272–282

    Google Scholar 

  • Medina E, Minchin P (1980) Stratification of δ13C Values of leaves in Amazonian rain forests. Oecologia 45:377–378

    Google Scholar 

  • Mulroy TW, Rundel PW (1977) Annual plants: Adaptations to desert environments. Biol Sci 27:109–114

    Google Scholar 

  • Neales TF, Fraser MS, Roksandic Z (1983) Carbon isotope composition of the halophyteDisphyma clavellatum (Haw.) Chinnock (Aizoaceae), as affected by salinity. Aust J Plant Physiol 10:437–444

    Google Scholar 

  • Neuffer B (in press) Leaf morphology inCapsella. Dependency on environments and biological parameters. Beitr Biol Pflanzen

  • Neuffer B, Hurka H (1986) Variation of growth from parameters inCapsella. Plant Syst Evol 153:265–279

    Google Scholar 

  • Nobel PS (1976) Photosynthetic rates of sun versus shade leaves ofHyptis emoryi Torr. Plant Physiol 58:218–223

    Google Scholar 

  • Nobel PS, Zaragoza LJ, Smith WK (1975) Relation between mesophyll surface area, photosynthetic rate and illumination level during development for leaves ofPlectranthus parviflorus Henckel. Plant Physiol 55:1067–1070

    Google Scholar 

  • Oppenheimer HR (1960) Adaptation to drought: Xerophytism. Plant water relationship in arid and semi-arid conditions. Arid Zone Res 15:105–138

    Google Scholar 

  • Park R, Epstein S (1960) Carbon isotope fraction during photosynthesis. Geochim Cosmochim Acta 21:110–126

    Google Scholar 

  • Pearman GI, Francey RJ, Fraser PJB (1976) Climatic implications of stable carbon isotopes in tree rings. Nature 260:771–773

    Google Scholar 

  • Pecora AC (1968) Sicilia, Le Regioni d'Italia. Nr. 16, U.T.E.T., Torino

    Google Scholar 

  • Roeske CA, O'Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphophate. Biochemistry 23:6275–6284

    Google Scholar 

  • Schleser GH, Pohling R (1980) δ13C-record in forest soil using a rapid method for preparing carbon dioxide samples. Int J Appl Radiat Isot 31:769–773

    Google Scholar 

  • Schleser GH, Jayasekera R (1985) δ13C-variations of leaves in forests as an indication of reassimilated CO2 from the soil. Oecologia 65:536–542

    Google Scholar 

  • Schmidt HL, Winkler FJ, Latzko E, Wirth E (1978) δ13C kinetic isotope effects in photosynthetic carboxylation reactions and13C values of plant material. Israel J Chem 17:223–224

    Google Scholar 

  • Schröder FG (1983) Die thermischen Vegetationszonen der Erde. Tuexenia 3:31–46

    Google Scholar 

  • Shields LU (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447

    Google Scholar 

  • Smith BN, Herath HMW, Chase JB (1973) Effect of growth temperature on carbon isotopic ratios in barley, pea and rape. Plant Cell Physiol 14:177–182

    Google Scholar 

  • Smith BN, Oliver J, McMillan C (1976) Influence of carbon source, oxygen concentration, light intensity and temperature on13C/12C ratios in plant tissues. Bot Gaz 137:99–104

    Google Scholar 

  • Stälfelt UG (1956) Morphologie und Anatomie des Blattes als Transpirationsorgan. Handb der Pflanzenphysiol, Bd III, pp 324–341

    Google Scholar 

  • Steinmeyer B, Wöhrmann K, Hurka H (1985) Phänotypenvariabilität und Umwelt beiCapsella bursa-pastoris (Cruciferae). Flora 177:323–334

    Google Scholar 

  • Tans PP (1978) Carbon 13 and Carbon 14 in trees and the atmospheric CO2 increase. Thesis, University of Groningen

  • Tanton TW, Crowdy SH (1972) Water pathways in higher plants. III. The transpiration stream with leaves. J Exp Bot 23:619–625

    Google Scholar 

  • Turrell FM (1936) The area of the internal exposed surface of dicotyledon leaves. Am J Bot 23:255–264

    Google Scholar 

  • Turrell FM (1965) Internal surface-intercellular space relationships and the dynamics of humidity maintenance in leaves. In: Wexler A (ed) Humidity and moisture, vol II: Applications. Reinhold, New York, pp 39–53

    Google Scholar 

  • Vogel JC (1978) Recycling of carbon in a forest environment. Oecol Plant 13:89–94

    Google Scholar 

  • Whelan T, Sackett WM, Benedict CR (1973) Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4 plants. Plant Physiol 51:1051–1054

    Google Scholar 

  • Wilson D, Cooper JP (1967) Assimilation ofLolium in relation to leaf mesophyll. Nature 214:989–992

    Google Scholar 

  • Winkler FJ, Kexel H, Kranz C, Schmidt H-L (1982) Parameters affecting the13CO2/12CO2 isotope discrimination of the ribulose-1,5-bisphosphate carboxylase reaction. In: Schmidt H-L, Förstel H, Heinzinger K (eds) Stable isotopes. Proc. 4th Int. Conf., Jülich 1981, Elsevier, Amsterdam Oxford New York, pp 83–89

    Google Scholar 

  • Wong WW, Benedict CR, Kohel RJ (1979) Enzymic fractionation of the stable carbon isotopes of carbon dioxide by ribulose-1,5-bisphosphate carboxylase. Plant Physiol 63:852–856

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleser, G.H., Bernhardt, K.G. & Hurka, H. Climatic adaptability of populations ofDiplotaxis erucoides D.C. (Brassicaceae) from Sicily, based on leaf morphology, leaf anatomy and δ13 C studies. Int J Biometeorol 33, 109–118 (1989). https://doi.org/10.1007/BF01686287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01686287

Key words

Navigation